Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of oligo(poly(ethylene glycol) fumarate)

Abstract

This protocol describes the synthesis of oligo(poly(ethylene glycol) fumarate) (OPF; 1–35 kDa; a polymer useful for tissue engineering applications) by a one-pot reaction of poly(ethylene glycol) (PEG) and fumaryl chloride. The procedure involves three parts: dichloromethane and PEG are first dried; the reaction step follows, in which fumaryl chloride and triethylamine are added dropwise to a solution of PEG in dichloromethane; and finally, the product solution is filtered to remove by-product salt, and the OPF product is twice crystallized, washed and dried under vacuum. The reaction is affected by the molecular weight of PEG and reactant molar ratio. The OPF product is cross-linked by radical polymerization by either a thermally induced or ultraviolet-induced radical initiator, and the physical properties of the OPF oligomer and resulting cross-linked hydrogel are easily tailored by varying PEG molecular weight. OPF hydrogels are injectable, they polymerize in situ and they undergo biodegradation by hydrolysis of ester bonds. The expected time required to complete this protocol is 6 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Apparatus for synthesis of OPF: distillation of dichloromethane (used in Steps 5–10).
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31, 4639–4656 (2010).

    Article  CAS  Google Scholar 

  2. Suggs, L.J. & Mikos, A.G. Development of poly(propylene fumarate-co-ethylene glycol) as an injectable carrier for endothelial cells. Cell Transplant 8, 345–350 (1999).

    Article  CAS  Google Scholar 

  3. Sarvestani, A.S., Xu, W., He, X. & Jabbari, E. Gelation and degradation characteristics of in situ photo-crosslinked poly(l-lactide-co-ethylene oxide-co-fumarate) hydrogels. Polymer 48, 7113–7120 (2007).

    Article  CAS  Google Scholar 

  4. Jo, S., Shin, H., Shung, A.K., Fisher, J.P. & Mikos, A.G. Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules 34, 2839–2844 (2001).

    Article  CAS  Google Scholar 

  5. Temenoff, J.S., Athanasiou, K.A., LeBaron, R.G. & Mikos, A.G. Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J. Biomed. Mater. Res. 59, 429–437 (2002).

    Article  CAS  Google Scholar 

  6. Shin, H., Temenoff, J.S. & Mikos, A.G. In vitro cytotoxicity of unsaturated oligo[poly(ethylene glycol) fumarate] macromers and their cross-linked hydrogels. Biomacromolecules 4, 552–560 (2003).

    Article  CAS  Google Scholar 

  7. Temenoff, J.S., Steinbis, E.S. & Mikos, A.G. Effect of drying history on swelling properties and cell attachment to oligo(poly(ethylene glycol) fumarate) hydrogels for guided tissue regeneration applications. J. Biomater. Sci. Polym. Ed. 14, 989–1004 (2003).

    Article  CAS  Google Scholar 

  8. Fisher, J.P. et al. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model. J. Biomed. Mater. Res. A 68, 428–438 (2004).

    Article  Google Scholar 

  9. Temenoff, J.S. et al. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules 5, 5–10 (2004).

    Article  CAS  Google Scholar 

  10. Park, H., Temenoff, J.S., Tabata, Y., Caplan, A.I. & Mikos, A.G. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28, 3217–3227 (2007).

    Article  CAS  Google Scholar 

  11. Guo, X. et al. Effects of TGF-β3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater. 6, 2920–2931 (2010).

    Article  CAS  Google Scholar 

  12. Guo, X. et al. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater. 6, 39–47 (2010).

    Article  CAS  Google Scholar 

  13. Guo, X. et al. In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells. Biomaterials 30, 2741–2752 (2009).

    Article  CAS  Google Scholar 

  14. Qiu, Y. et al. PEG-based hydrogels with tunable degradation characteristics to control delivery of marrow stromal cells for tendon overuse injuries. Acta Biomater. 7, 959–966 (2011).

    Article  CAS  Google Scholar 

  15. Wang, H. et al. Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodeling and function of myocardial infarction. J. Cell. Mol. Med. published online, doi:10.1111/j.1582-4934.2011.01409.x (12 August 2011).

  16. Zhang, M.W. et al. Adapting biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels for pigment epithelial cell encapsulation and lens regeneration. Tissue Eng. Part C Methods 16, 261–267 (2010).

    Article  Google Scholar 

  17. Rooney, G.E. et al. Sustained delivery of dibutyryl cyclic adenosine monophosphate to the transected spinal cord via oligo [(polyethylene glycol) fumarate] hydrogels. Tissue Eng. Part A 17, 1287–1302 (2011).

    Article  CAS  Google Scholar 

  18. Temenoff, J.S. et al. In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. J. Biomed. Mater. Res. A 70, 235–244 (2004).

    Article  Google Scholar 

  19. Park, H., Temenoff, J.S., Holland, T.A., Tabata, Y. & Mikos, A.G. Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26, 7095–7103 (2005).

    Article  CAS  Google Scholar 

  20. Hammoudi, T.M., Lu, H. & Temenoff, J.S. Long-term spatially defined coculture within three-dimensional photopatterned hydrogels. Tissue Eng. Part C Methods 16, 1621–1628 (2010).

    Article  CAS  Google Scholar 

  21. Holland, T.A., Tabata, Y. & Mikos, A.G. In vitro release of transforming growth factor-β1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J. Control Release 91, 299–313 (2003).

    Article  CAS  Google Scholar 

  22. Holland, T.A., Tessmar, J.K.V., Tabata, Y. & Mikos, A.G. Transforming growth factor-β1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J. Control Release 94, 101–114 (2004).

    Article  CAS  Google Scholar 

  23. Holland, T.A., Tabata, Y. & Mikos, A.G. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J. Control Release 101, 111–125 (2005).

    Article  CAS  Google Scholar 

  24. Holland, T.A. et al. Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis Cartilage 15, 187–197 (2007).

    Article  CAS  Google Scholar 

  25. Holland, T.A. et al. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J. Biomed. Mater. Res. A 75, 156–167 (2005).

    Article  Google Scholar 

  26. Park, H. et al. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules 10, 541–546 (2009).

    Article  CAS  Google Scholar 

  27. Park, H. et al. Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J. Biomed. Mater. Res. A 88, 889–897 (2009).

    Article  Google Scholar 

  28. Kasper, F.K., Kushibiki, T., Kimura, Y., Mikos, A.G. & Tabata, Y. In vivo release of plasmid DNA from composites of oligo(poly(ethylene glycol)fumarate) and cationized gelatin microspheres. J. Control Release 107, 547–561 (2005).

    Article  CAS  Google Scholar 

  29. Kasper, F.K. et al. In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. J. Control Release 104, 521–539 (2005).

    Article  CAS  Google Scholar 

  30. Kasper, F.K. et al. Characterization of DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in vitro. J. Biomed. Mater. Res. A 78, 823–835 (2006).

    Article  Google Scholar 

  31. Kasper, F.K. et al. Evaluation of bone regeneration by DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in a critical-sized calvarial defect. J. Biomed. Mater. Res. A 78, 335–342 (2006).

    Article  Google Scholar 

  32. Henke, M., Brandl, F., Goepferich, A.M. & Tessmar, J.K. Size-dependent release of fluorescent macromolecules and nanoparticles from radically cross-linked hydrogels. Eur. J. Pharm. Biopharm. 74, 184–192 (2010).

    Article  CAS  Google Scholar 

  33. Dadsetan, M. et al. A stimuli-responsive hydrogel for doxorubicin delivery. Biomaterials 31, 8051–8062 (2010).

    Article  CAS  Google Scholar 

  34. Shin, H., Jo, S. & Mikos, A.G. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethyleneglycol) spacer. J. Biomed. Mater. Res. 61, 169–179 (2002).

    Article  CAS  Google Scholar 

  35. Shin, H., Zygourakis, K., Farach-Carson, M.C., Yaszemski, M.J. & Mikos, A.G. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterials 25, 895–906 (2004).

    Article  Google Scholar 

  36. Shin, H., Zygourakis, K., Farach-Carson, M.C., Yaszemski, M.J. & Mikos, A.G. Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. J. Biomed. Mater. Res. A 69, 535–543 (2004).

    Article  Google Scholar 

  37. Jo, S., Shin, H. & Mikos, A.G. Modification of oligo(poly(ethylene glycol) fumarate) macromer with a GRGD peptide for the preparation of functionalized polymer networks. Biomacromolecules 2, 255–261 (2001).

    Article  CAS  Google Scholar 

  38. Shin, H. et al. Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and beta-glycerol phosphate. Biomaterials 26, 3645–3654 (2005).

    Article  CAS  Google Scholar 

  39. Bongio, M. et al. Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior. Eur. Cell. Mater. 22, 359–376 (2011).

    Article  CAS  Google Scholar 

  40. Leeuwenburgh, S.C.G., Jansen, J.A. & Mikos, A.G. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes. J. Biomater. Sci. Polym. Ed. 18, 1547–1564 (2007).

    CAS  PubMed  Google Scholar 

  41. Shin, H., Quinten Ruhé, P., Mikos, A.G. & Jansen, J.A. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials 24, 3201–3211 (2003).

    Article  CAS  Google Scholar 

  42. Temenoff, J.S., Shin, H., Conway, D.E., Engel, P.S. & Mikos, A.G. In vitro cytotoxicity of redox radical initiators for cross-linking of oligo(poly(ethylene glycol) fumarate) macromers. Biomacromolecules 4, 1605–1613 (2003).

    Article  CAS  Google Scholar 

  43. Dadsetan, M., Szatkowski, J.P., Yaszemski, M.J. & Lu, L. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering. Biomacromolecules 8, 1702–1709 (2007).

    Article  CAS  Google Scholar 

  44. Peter, S.J., Suggs, L.J., Yaszemski, M.J., Engel, P.S. & Mikos, A.G. Synthesis of poly(propylene fumarate) by acylation of propylene glycol in the presence of a proton scavenger. J. Biomater. Sci. Polym. Ed. 10, 363–373 (1999).

    Article  CAS  Google Scholar 

  45. Wang, S., Lu, L., Gruetzmacher, J.A., Currier, B.L. & Yaszemski, M.J. Synthesis and characterizations of biodegradable and crosslinkable poly(epsilon-caprolactone fumarate), poly(ethylene glycol fumarate), and their amphiphilic copolymer. Biomaterials 27, 832–841 (2006).

    Article  CAS  Google Scholar 

  46. Cai, L. & Wang, S. Elucidating colorization in the functionalization of hydroxyl-containing polymers using unsaturated anhydrides/acyl chlorides in the presence of triethylamine. Biomacromolecules 11, 304–307 (2010).

    Article  CAS  Google Scholar 

  47. Tanahashi, K. & Mikos, A.G. Cell adhesion on poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res. 62, 558–566 (2002).

    Article  CAS  Google Scholar 

  48. Suggs, L.J. et al. Preparation and characterization of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomater. Sci. Polym. Ed. 9, 653–666 (1998).

    Article  CAS  Google Scholar 

  49. Suggs, L.J., Shive, M.S., Garcia, C.A., Anderson, J.M. & Mikos, A.G. In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res. 46, 22–32 (1999).

    Article  CAS  Google Scholar 

  50. Fisher, J.P., Jo, S., Mikos, A.G. & Reddi, A.H. Thermoreversible hydrogel scaffolds for articular cartilage engineering. J. Biomed. Mater. Res. A 71, 268–274 (2004).

    Article  Google Scholar 

  51. He, X. & Jabbari, E. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules 8, 780–792 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this protocol was supported by grants from the US National Institutes of Health (R01 AR48756) and the Armed Forces Institute of Regenerative Medicine (W81XWH-08-2-0032). L.A.K. acknowledges support from a graduate fellowship from the National Science Foundation (0940902).

Author information

Authors and Affiliations

Authors

Contributions

L.A.K., F.K.K. and A.G.M. optimized the procedure. L.A.K. drafted the manuscript. F.K.K. and A.G.M. supervised the project and critically revised the manuscript.

Corresponding author

Correspondence to Antonios G Mikos.

Ethics declarations

Competing interests

A.G.M. is inventor on a patent involving the material described in this protocol. The remaining authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

A typical 1H NMR spectrum (400 MHz, CDCl3, ambient temperature) of OPF3K showing chemical shifts of important peaks. (PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinard, L., Kasper, F. & Mikos, A. Synthesis of oligo(poly(ethylene glycol) fumarate). Nat Protoc 7, 1219–1227 (2012). https://doi.org/10.1038/nprot.2012.055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.055

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing