Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Efficient introduction of specific TP53 mutations into mouse embryonic fibroblasts and embryonic stem cells

Abstract

This protocol describes a rapid, precise method for generating sets of embryonic stem (ES) cells or mouse embryonic fibroblasts (MEFs) harboring point mutations in the p53 tumor suppressor gene (officially known as Trp53). The strategy uses cells from the Trp53 (p53-null) 'platform' mouse, which allows site-specific integration of plasmid DNA into the Trp53 locus. Simple PCR protocols identify correctly targeted clones and immunoblots verify re-expression of the protein. We also present protocol modifications needed for efficient recovery of MEF clones expressing p53 constructs that retain wild-type function, including growth at low (3%) oxygen and transient downregulation of p53 regulators to forestall cell senescence of primary MEFs. A library of cell lines expressing various p53 mutants derived from the same population of primary fibroblasts or platform ES cells can be acquired and screened in less than 1 month.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Using the TOP system.
Figure 2: Confirming integrase-mediated cassette exchange by PCR.
Figure 3: Generation of related MEF lines expressing missense p53 mutants.
Figure 4: Transient silencing of INK4a/ARF potentiates cell growth and colony formation.
Figure 5: ES cell lines expressing both WT and mutant p53 can be generated from a plf/plf parent line (G1) under feeder-free conditions.

Similar content being viewed by others

References

  1. Palmero, E.I., Achatz, M.I., Ashton-Prolla, P., Olivier, M. & Hainaut, P. Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome. Curr. Opin. Oncol. 22, 64–69 (2010).

    Article  CAS  Google Scholar 

  2. Breen, L., Heenan, M., Amberger-Murphy, V. & Clynes, M. Investigation of the role of p53 in chemotherapy resistance of lung cancer cell lines. Anticancer Res. 27, 1361–1364 (2007).

    CAS  PubMed  Google Scholar 

  3. Breen, L., Keenan, J. & Clynes, M. Generation of lung cancer cell line variants by drug selection or cloning. Methods Mol. Biol. 731, 125–133 (2011).

    Article  CAS  Google Scholar 

  4. Hollstein, M. et al. New approaches to understanding p53 gene tumor mutation spectra. Mutat. Res. 431, 199–209 (1999).

    Article  CAS  Google Scholar 

  5. Cimoli, G. et al. Meta-analysis of the role of p53 status in isogenic systems tested for sensitivity to cytotoxic antineoplastic drugs. Biochim. Biophys. Acta 1705, 103–120 (2004).

    CAS  PubMed  Google Scholar 

  6. Milo, G.E., Shuler, C.F., Lee, H. & Casto, B.C. A conundrum in molecular toxicology: molecular and biological changes during neoplastic transformation of human cells. Cell Biol. Toxicol. 11, 329–345 (1995).

    Article  CAS  Google Scholar 

  7. Wei, Q.X., Odell, A.F., van der Hoeven, F. & Hollstein, M. Rapid derivation of genetically related mutants from embryonic cells harboring a recombinase-specific Trp53 platform. Cell Cycle 10, 1261–1270 (2011).

    Article  CAS  Google Scholar 

  8. Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010).

    Article  Google Scholar 

  9. Whibley, C., Pharoah, P.D. & Hollstein, M. p53 polymorphisms: cancer implications. Nat. Rev. Cancer 9, 95–107 (2009).

    Article  CAS  Google Scholar 

  10. Reinbold, M. et al. Common tumour p53 mutations in immortalized cells from Hupki mice heterozygous at codon 72. Oncogene 27, 2788–2794 (2008).

    Article  CAS  Google Scholar 

  11. Song, H., Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat. Cell Biol. 9, 573–580 (2007).

    Article  CAS  Google Scholar 

  12. Luo, J.L. et al. Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 20, 320–328 (2001).

    Article  CAS  Google Scholar 

  13. Odell, A., Askham, J., Whibley, C. & Hollstein, M. How to become immortal: let MEFs count the ways. Aging (Albany NY) 2, 160–165 (2010).

    Article  CAS  Google Scholar 

  14. Whibley, C. et al. Wild-type and Hupki (human p53 knock-in) murine embryonic fibroblasts: p53/ARF pathway disruption in spontaneous escape from senescence. J. Biol. Chem. 285, 11326–11335 (2010).

    Article  CAS  Google Scholar 

  15. Millau, J.F., Mai, S., Bastien, N. & Drouin, R. p53 functions and cell lines: have we learned the lessons from the past? Bioessays 32, 392–400 (2010).

    Article  CAS  Google Scholar 

  16. vom Brocke, J., Schmeiser, H.H., Reinbold, M. & Hollstein, M. MEF immortalization to investigate the ins and outs of mutagenesis. Carcinogenesis 27, 2141–2147 (2006).

    Article  CAS  Google Scholar 

  17. Liu, Z. et al. Human tumor p53 mutations are selected for in mouse embryonic fibroblasts harboring a humanized p53 gene. Proc. Natl. Acad. Sci. USA 101, 2963–2968 (2004).

    Article  CAS  Google Scholar 

  18. Sur, S. et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc. Natl. Acad. Sci. USA 106, 3964–3969 (2009).

    Article  CAS  Google Scholar 

  19. Nedelko, T. et al. TP53 mutation signature supports involvement of aristolochic acid in the aetiology of endemic nephropathy-associated tumors. Int. J. Cancer 124, 987–990 (2009).

    Article  CAS  Google Scholar 

  20. Luo, J.L. et al. UV-induced DNA damage and mutations in Hupki (human p53 knock-in) mice recapitulate p53 hotspot alterations in sun-exposed human skin. Cancer Res. 61, 8158–8163 (2001).

    CAS  PubMed  Google Scholar 

  21. Barbaric, I. & Dear, T.N. Culture of murine embryonic stem cells. Methods Mol. Biol. 561, 161–184 (2009).

    Article  CAS  Google Scholar 

  22. Feng, L., Hollstein, M. & Xu, Y. Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 5, 2812–2819 (2006).

    Article  CAS  Google Scholar 

  23. Ozenne, P., Eymin, B., Brambilla, E. & Gazzeri, S. The ARF tumor suppressor: structure, functions and status in cancer. Int. J. Cancer 127, 2239–2247 (2010).

    Article  CAS  Google Scholar 

  24. Niwa, H., Ogawa, K., Shimosato, D. & Adachi, K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460, 118–122 (2009).

    Article  CAS  Google Scholar 

  25. Ogawa, K. et al. Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. J. Cell Sci. 120, 55–65 (2007).

    Article  CAS  Google Scholar 

  26. Ramirez, M.A., Pericuesta, E., Yanez-Mo, M., Palasz, A. & Gutierrez-Adan, A. Effect of long-term culture of mouse embryonic stem cells under low oxygen concentration as well as on glycosaminoglycan hyaluronan on cell proliferation and differentiation. Cell Prolif. 44, 75–85 (2011).

    Article  CAS  Google Scholar 

  27. Tang, W. et al. Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J. Neurosci. 29, 8621–8629 (2009).

    Article  CAS  Google Scholar 

  28. Fernandes, T.G., Diogo, M.M., Fernandes-Platzgummer, A., da Silva, C.L. & Cabral, J.M. Different stages of pluripotency determine distinct patterns of proliferation, metabolism, and lineage commitment of embryonic stem cells under hypoxia. Stem Cell Res. 5, 76–89 (2010).

    Article  CAS  Google Scholar 

  29. Powers, D.E., Millman, J.R., Huang, R.B. & Colton, C.K. Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics. Biotechnol. Bioeng. 101, 241–254 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Pechlivani, A. Weninger and U. Kloz for technical assistance, and the Yorkshire Cancer Research, the White Rose Foundation and the German Cancer Research Center (Deutsches Krebsforschungszentrum) for funding.

Author information

Authors and Affiliations

Authors

Contributions

M.H., A.F.O. and Q.-X.W. designed the experiments; Q.-X.W., A.F.O. and F.v.d.H. conducted the experiments; A.F.O., Q.-X.W. and M.H. analyzed the data; A.F.O. and M.H. supervised the project; A.F.O., M.H. and Q.-X.W. wrote the protocol.

Corresponding authors

Correspondence to Monica Hollstein or Adam F Odell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figs. 1

Growth of primary platform MEFs at 3% and 21% O2 conditions (a) Growth rate and (b) proliferation of platform MEFs (plf/plf; CA10 and 182.2) is enhanced by growth at 3% O2. Shown are collated data from 3 independent experiments expressed around the SEM. (PDF 1438 kb)

Supplementary Figs. 2

Transient depletion of Ink4a gene products enhances proliferation of primary platform MEFs. Shown are collated data from 4 independent experiments expressed around the SEM. (PDF 1160 kb)

Supplementary Figs. 3

Functional cell lines are generated following Ink4a siRNA depletion. Analysis of cell lines produced at different O2 tensions following prior Ink4a depletion by immunoblotting. Expression of p21 is restored in cell lines generated with TOP constructs retaining WT p53 function (P72, R72 and S15A) when p16 and p19 are previously depleted. Cells were treated with doxorubicin (4 h, 0.5 µM) prior to lysis for stimulation of serine 15 phosphorylation. (PDF 1902 kb)

Supplementary Figs. 4

Expression of p19 (p19arf; ab80-100) is restored by 7 days post-selection (10 days post-siRNA) in WT p53 (pab1801; sc-98) TOP transfectants grown at 21% O2. Scale bars: 20 µm. (PDF 1676 kb)

Supplementary Fig. 5

Expression of several common markers of pluripotency, Nanog (ab80892), Oct3/4 (sc-5279), Sox2 (ab97959), SSEA1 (ab16285) and Tbx3 (sc-31657) are maintained in ES cells generated to express WT, G245S and A138V p53. Also shown are the parent G1 ES cell line and the heterozygous D2 ES cells. Scale bars: 20 µm. (PDF 3718 kb)

Supplementary Method

Analysis of integrase-mediated cassette exchange by duplex PCR (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, QX., van der Hoeven, F., Hollstein, M. et al. Efficient introduction of specific TP53 mutations into mouse embryonic fibroblasts and embryonic stem cells. Nat Protoc 7, 1145–1160 (2012). https://doi.org/10.1038/nprot.2012.042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.042

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing