Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An isolated tumor perfusion model in mice

Subjects

Abstract

The role of stromal cells in the tumor microenvironment has been extensively characterized. We and others have shown that stromal cells may participate in several steps of the metastatic cascade. This protocol describes an isolated tumor perfusion model that enables studies of cancer and stromal cell shedding. It could also be used to study the effects of therapies interfering with the shedding of tumor cells or fragments, circulating (stem) cells or biomarkers. Primary tumors are grown in a microenvironment in which stromal cells express GFP ubiquitously. Tumors are implanted orthotopically or can be implanted ectopically. As a result, all tumor-associated stromal cells express GFP. This technique can be used to detect and study the role of stromal cells in tumor fragments within the circulation in mice. Studying the role of stromal cells in circulating tumor fragments using this model may take 2–10 weeks, depending on the growth rate of the primary tumor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the experiment.
Figure 2: Cannulation of the carotid artery.
Figure 3: Representative images of tumor cell clumps retained on a 40-mm mesh.
Figure 4: Size and viability of circulating metastatic cancer cells.

Similar content being viewed by others

References

  1. Barcellos-Hoff, M.H. & Ravani, S.A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).

    CAS  PubMed  Google Scholar 

  2. Bhowmick, N.A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobs, T.W., Byrne, C., Colditz, G., Connolly, J.L. & Schnitt, S.J. Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N. Engl. J. Med. 340, 430–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bouvet, M. et al. In vivo color-coded imaging of the interaction of colon cancer cells and splenocytes in the formation of liver metastases. Cancer Res. 66, 11293–11297 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Bhowmick, N.A., Neilson, E.G. & Moses, H.L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olumi, A.F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  9. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Tlsty, T.D. Stromal cells can contribute oncogenic signals. Semin. Cancer Biol. 11, 97–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Fidler, I.J. The pathogenesis of cancer metastasis: the ′seed and soil′ hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Joyce, J.A. & Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Podsypanina, K. et al. Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321, 1841–1844 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Kaplan, R.N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Deventer, H.W. et al. C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am. J. Pathol. 173, 253–264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Al-Mehdi, A.B. et al. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med. 6, 100–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Liotta, L.A., Saidel, M.G. & Kleinerman, J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 36, 889–894 (1976).

    CAS  PubMed  Google Scholar 

  21. Fidler, I.J. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur. J. Cancer 9, 223–227 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. Ruiter, D.J., van Krieken, J.H., van Muijen, G.N. & de Waal, R.M. Tumour metastasis: is tissue an issue? Lancet Oncol. 2, 109–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Sahai, E. Illuminating the metastatic process. Nat. Rev. Cancer 7, 737–749 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Duyverman, A.M., Steller, E.J., Fukumura, D., Jain, R.K. & Duda, D.G. Studying carcinoma-associated fibroblast involvement in cancer metastasis in mice. Nat. Protoc. 7, 756–762 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duyverman, A.M.M.J., Kohno, M., Duda, D.G., Jain, R.K. & Fukumura, D. A transient parabiosis skin transplantation model in mice. Nat. Protoc. 7, 763–770 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duda, D.G. et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl Acad. Sci. USA 107, 21677–21682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakhasi, H.L., Grantham, F.H. & Gullino, P.M. Expression of κ-casein in normal and neoplastic rat mammary gland is under the control of prolactin. J. Biol. Chem. 259, 14894–14898 (1984).

    CAS  PubMed  Google Scholar 

  28. Gullino, P.M. Tumor pathophysiology: the perfusion model. Antibiot. Chemother. 28, 35–42 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Gullino, P.M. & Grantham, F.H. Studies on the exchange of fluids between host and tumor. I. A method for growing 'tissue-isolated' tumors in laboratory animals. J. Natl. Cancer Inst. 27, 679–693 (1961).

    CAS  PubMed  Google Scholar 

  30. Kristensen, C.A., Roberge, S. & Jain, R.K. Effect of tumor necrosis factor alpha on vascular resistance, nitric oxide production, and glucose and oxygen consumption in perfused tissue-isolated human melanoma xenografts. Clin. Cancer Res. 3, 319–324 (1997).

    CAS  PubMed  Google Scholar 

  31. Bayless, K.J., Kwak, H.I. & Su, S.C. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat. Protoc. 4, 1888–1898 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Albini, A. & Benelli, R. The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat. Protoc. 2, 504–511 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Proia, D.A. & Kuperwasser, C. Reconstruction of human mammary tissue in a mouse model. Nat. Protoc. 1, 206–214 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bockhorn, M., Roberge, S., Sousa, C., Jain, R.K. & Munn, L.L. Differential gene expression in metastasizing cells shed from kidney tumors. Cancer Res. 64, 2469–2473 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Swartz, M.A. et al. Cells shed from tumours show reduced clonogenicity, resistance to apoptosis, and in vivo tumorigenicity. Br. J. Cancer 81, 756–759 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by US National Cancer Institute grants P01-CA80124, R01-CA115767, R01-CA85140, R01-CA126642 and T32-CA73479 (R.K.J.), R01-CA96915 (D.F.), R21-CA139168 and R01-CA159258 (D.G.D.) and Federal Share Proton Beam Program grants (R.K.J., D.F. and D.G.D.); Department of Defense Innovator Award W81XWH-10-1-0016 (R.K.J.) and Predoctoral Fellowship W81XWH-06-1-0781 (A.M.M.J.D.); American Cancer Society grant RSG-11-073-01TBG (D.G.D.); and Stichting Michael Van Vloten Fonds and the Stichting Jo Kolk (A.M.M.J.D.). We acknowledge the outstanding technical assistance of J. Kahn and P. Huang with animal models.

Author information

Authors and Affiliations

Authors

Contributions

D.G.D., D.F. and R.K.J. designed the studies; A.M.M.J.D., S.R. and M.K. performed the experiments; D.G.D., D.F., A.M.M.J.D., M.K. and R.K.J. analyzed the data; and A.M.M.J.D., D.G.D., D.F. and R.K.J. edited the manuscript.

Corresponding author

Correspondence to Rakesh K Jain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duyverman, A., Kohno, M., Roberge, S. et al. An isolated tumor perfusion model in mice. Nat Protoc 7, 749–755 (2012). https://doi.org/10.1038/nprot.2012.030

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.030

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer