Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mouse intragastric infusion (iG) model

Abstract

Direct intragastric delivery of a diet, nutrient or test substance can be achieved in rodents (mice and rats) on a long-term (2–3 months) basis using a chronically implanted gastrostomy catheter and a flow-through swivel system. This rodent intragastric infusion (iG) model has broad applications in research on food intake, gastrointestinal (GI) physiology, GI neuroendocrinology, drug metabolism and toxicity, obesity and liver disease. It achieves maximal control over the rate and pattern of delivery and it can be combined with normal ad libitum feeding of solid diet if so desired. It may be adopted to achieve infusion at other sites of the GI system to test the role of a bypassed GI segment in neuroendocrine physiology, and its use in genetic mouse models facilitates the genetic analysis of a central question under investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catheter setup.
Figure 2: Surgical procedure for implantation of a gastric catheter.
Figure 3: Mice during the experiment.

Similar content being viewed by others

References

  1. Tsukamoto, H., Delgado, G., Reidelberger, R.D. & Largman, C. Effects of cholecystokinin, food intake and cephalic stimuli on plasma levels of amylase, lipase, and immunoreactive cationic trypsinogen in rats. Digestion 35, 69–77 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Colomb, V. et al. Route of nutrient delivery affects insulin sensitivity and liver glucose transporter expression in rat. Am. J. Physiol. 269, E827–E833 (1995).

    CAS  PubMed  Google Scholar 

  3. Sclafani, A. & Glendinning, J.I. Sugar and fat conditioned flavor preferences in C57BL/6J and 129 mice: oral and postoral interactions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R712–R720 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. de Araujo, I.E. et al. Food reward in the absence of taste receptor signaling. Neuron 57, 930–941 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Schier, L.A., Davidson, T.L. & Powley, T.L. Ongoing ingestive behavior is rapidly suppressed by a preabsorptive, intestinal 'bitter taste' cue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1557–R1568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zukerman, S., Ackroff, K. & Sclafani, A. Rapid post-oral stimulation of intake and flavor conditioning by glucose and fat in the mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1635–R1647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sclafani, A., Glass, D.S., Margolskee, R.F. & Glendinning, J.I. Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1643–R1650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reidelberger, R.D., Heimann, D., Kelsey, L. & Hulce, M. Effects of peripheral CCK receptor blockade on feeding responses to duodenal nutrient infusions in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R389–R398 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Reidelberger, R.D. et al. Amylin receptor blockade stimulates food intake in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R568–R574 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Tsukamoto, H. et al. Severe and progressive steatosis and focal necrosis in rat liver induced by continuous intragastric infusion of ethanol and low fat diet. Hepatology 5, 224–232 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Tsukamoto, H., Towner, S.J., Ciofalo, L.M. & French, S.W. Ethanol-induced liver fibrosis in rats fed high fat diet. Hepatology 6, 814–822 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Tsukamoto, H. et al. Induction of liver cirrhosis in rats fed alcohol and iron. J. Clin. Invest. 96, 620–630 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mathurin, P. et al. Exacerbation of alcoholic liver injury by enteral endotoxin in rats. Hepatology 32, 1008–1017 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Tsukamoto, H. Animal models of alcoholic liver injury. Clin. Liver Dis. 2, 739–751 (1998).

    Article  Google Scholar 

  15. Clark, J.M., Brancati, F.L. & Diehl, A.M. Nonalcoholic fatty liver disease. Gastroenterology 122, 1649–1657 (2002).

    Article  PubMed  Google Scholar 

  16. Pelleymounter, M.A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491–495 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Costet, P. et al. Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J. Biol. Chem. 273, 29577–29585 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Fan, C.Y. et al. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J. Biol. Chem. 273, 15639–15645 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Lu, S.C. et al. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc. Natl. Acad. Sci. USA 98, 5560–5565 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horie, Y. et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest. 113, 1774–1783 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu, S. et al. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression. J. Biol. Chem. 278, 498–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Poulsom, R. Morphological changes of organs after sucrose or fructose feeding. Prog. Biochem. Pharmacol. 21, 104–134 (1986).

    CAS  PubMed  Google Scholar 

  24. Surwit, R.S. et al. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44, 645–651 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Deng, Q.G. et al. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology 42, 905–914 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Tsukamoto, H., Mkrtchyan, H. & Dynnyk, A. Intragastric ethanol infusion model in rodents. Methods Mol. Biol. 447, 33–48 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the technical support provided by all animal core personnel in the past. This work was supported by a P50 center grant from the US National Institute on Alcohol Abuse and Alcoholism (P50AA011999), other US National Institutes of Health grants (U01AA018663, R24AA012885) and the Medical Research Service of the US Department of Veterans Affairs. P.-Y.W. is a visiting scholar from the Department of Isotope Application, Institute of Nuclear Energy Research, Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Contributions

A.U., R.H. and R.L. contributed to generating the data presented, creating figures and tables, and drafting the methods portion of the manuscript. P.-Y.W. contributed to assembly of the results and generation of figures. K.M. contributed his findings on alcohol and HCV interactions. H.T. who is an original developer of the rodent iG model contributed to the generation and assembly of figures and tables, and to the completion of the manuscript through supervision of others.

Corresponding author

Correspondence to Hidekazu Tsukamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, A., Lazaro, R., Wang, PY. et al. Mouse intragastric infusion (iG) model. Nat Protoc 7, 771–781 (2012). https://doi.org/10.1038/nprot.2012.014

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.014

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing