Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Nicking enzyme–based internal labeling of DNA at multiple loci

Abstract

The labeling of biomolecules has become standard practice in molecular biosciences. Modifications are used for detection, sorting and isolation of small molecules, complexes and entire cells. We have recently reported a method for introducing internal chemical and structural modifications into kbp-sized DNA target substrates that are frequently used in single-molecule experiments. It makes use of nicking enzymes that create single-stranded DNA gaps, which can be subsequently filled with labeled oligonucleotides. Here we provide a detailed protocol and further expand this method. We show that modifications can be introduced at distant loci within one molecule in a simple one-pot reaction. In addition, we achieve labeling on both strands at a specific locus, as demonstrated by Förster resonance energy transfer (FRET) experiments. The protocol requires an initial cloning of the target substrate (3–5 d), whereas the labeling itself takes 4–6 h. More elaborate purification and verification of label incorporation requires 2 h for each method.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow for internal DNA labeling using a nicking enzyme repeat sequence.
Figure 2: Plasmid map.
Figure 3: Multilocus labeling.
Figure 4: Analysis of second-strand labeling by FRET.

Similar content being viewed by others

References

  1. Gottfried, A. & Weinhold, E. Sequence-specific covalent labelling of DNA. Biochem. Soc. Trans. 39, 623–628 (2011).

    Article  CAS  Google Scholar 

  2. Chattopadhaya, S., Abu, F.B. & Yao, S.Q. Expanding the chemical biologist's tool kit: chemical labelling strategies and its applications. Curr. Med. Chem. 16, 4527–4543 (2009).

    Article  CAS  Google Scholar 

  3. Hohng, S. et al. Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the Holliday junction. Science 318, 279–283 (2007).

    Article  CAS  Google Scholar 

  4. Ray, K., Sabanayagam, C.R., Lakowicz, J.R. & Black, L.W. DNA crunching by a viral packaging motor: compression of a procapsid-portal stalled Y-DNA substrate. Virology 398, 224–232 (2010).

    Article  CAS  Google Scholar 

  5. Hilario, E. End labeling procedures: an overview. Mol. Biotechnol. 28, 77–80 (2004).

    Article  CAS  Google Scholar 

  6. Aathavan, K. et al. Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 461, 669–673 (2009).

    Article  CAS  Google Scholar 

  7. Brutzer, H., Luzzietti, N., Klaue, D. & Seidel, R. Energetics at the DNA supercoiling transition. Biophys. J. 98, 1267–1276 (2010).

    Article  CAS  Google Scholar 

  8. Wang, H. & Hays, J.B. Construction of MMR plasmid substrates and analysis of MMR error correction and excision. Methods Mol. Biol. 314, 345–353 (2006).

    Article  CAS  Google Scholar 

  9. Larson, E.D., Bednarski, D.W. & Maizels, N. High-fidelity correction of genomic uracil by human mismatch repair activities. BMC Mol. Biol. 9, 94 (2008).

    Article  Google Scholar 

  10. Nielsen, P.E. Sequence-selective targeting of duplex DNA by peptide nucleic acids. Curr. Opin. Mol. Ther. 12, 184–191 (2010).

    CAS  PubMed  Google Scholar 

  11. Duca, M., Vekhoff, P., Oussedik, K., Halby, L. & Arimondo, P.B. The triple helix: 50 years later, the outcome. Nucleic Acids Res. 36, 5123–5138 (2008).

    Article  CAS  Google Scholar 

  12. Kalkbrenner, T., Arnold, A. & Tans, S.J. Internal dynamics of supercoiled DNA molecules. Biophys. J. 96, 4951–4955 (2009).

    Article  CAS  Google Scholar 

  13. Jo, K., Schramm, T.M. & Schwartz, D.C. A single-molecule barcoding system using nanoslits for DNA analysis: nanocoding. Methods Mol. Biol. 544, 29–42 (2009).

    Article  CAS  Google Scholar 

  14. Pljevaljcić, G., Schmidt, F. & Weinhold, E. Sequence-specific methyltransferase-induced labeling of DNA (SMILing DNA). Chembiochem 5, 265–269 (2004).

    Article  Google Scholar 

  15. Dalhoff, C., Lukinavicius, G., Klimasǎuskas, S. & Weinhold, E. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat. Chem. Biol. 2, 31–32 (2006).

    Article  CAS  Google Scholar 

  16. Pljevaljcić, G., Schmidt, F., Scheidig, A.J., Lurz, R. & Weinhold, E. Quantitative labeling of long plasmid DNA with nanometer precision. Chembiochem 8, 1516–1519 (2007).

    Article  Google Scholar 

  17. Braun, G. et al. Enzyme-directed positioning of nanoparticles on large DNA templates. Bioconjug. Chem. 19, 476–479 (2008).

    Article  CAS  Google Scholar 

  18. Motorin, Y. et al. Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling. Nucleic Acids Res. 39, 1943–1952 (2011).

    Article  CAS  Google Scholar 

  19. Lukinavicius, G. et al. Targeted labeling of DNA by methyltransferase-directed transfer of activated groups (mTAG). J. Am. Chem. Soc. 129, 2758–2759 (2007).

    Article  CAS  Google Scholar 

  20. Wang, H. & Hays, J.B. Simple and rapid preparation of gapped plasmid DNA for incorporation of oligomers containing specific DNA lesions. Mol. Biotechnol. 19, 133–140 (2001).

    Article  CAS  Google Scholar 

  21. Kuhn, H. & Frank-Kamenetskii, M.D. Labeling of unique sequences in double-stranded DNA at sites of vicinal nicks generated by nicking endonucleases. Nucleic Acids Res. 36, e40 (2008).

    Article  Google Scholar 

  22. Ang, W.H., Brown, W.W. & Lippard, S.J. Preparation of mammalian expression vectors incorporating site-specifically platinated-DNA lesions. Bioconjug. Chem. 20, 1058–1063 (2009).

    Article  CAS  Google Scholar 

  23. Wang, H. & Hays, J.B. Signaling from DNA mispairs to mismatch-repair excision sites despite intervening blockades. EMBO J. 23, 2126–2133 (2004).

    Article  CAS  Google Scholar 

  24. Luzzietti, N. et al. Efficient preparation of internally modified single-molecule constructs using nicking enzymes. Nucleic Acids Res. 39, e15 (2011).

    Article  Google Scholar 

  25. Wang, H., Hoffman, P.D., Lawrence, C. & Hays, J.B. Testing excision models for responses of mismatch-repair systems to UV photoproducts in DNA. Environ. Mol. Mutagen. 47, 296–306 (2006).

    Article  CAS  Google Scholar 

  26. Markham, N.R. & Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 33 (Web Server issue): W577–W581 (2005).

    Article  CAS  Google Scholar 

  27. Stanley, L.K. et al. When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I. EMBO J. 25, 2230–2239 (2006).

    Article  CAS  Google Scholar 

  28. Gore, J. et al. Mechanochemical analysis of DNA gyrase using rotor bead tracking. Nature 439, 100–104 (2006).

    Article  CAS  Google Scholar 

  29. Sambrook, J. & Russell, D.W. (eds.) Neutral polyacrylamide gel electrophoresis. in Molecular Cloning: A Laboratory Manual 3rd ed., Vol. 2 (Cold Spring Harbor Laboratory Press, New York, 2001).

  30. Wozniak, A.K., Schröder, G.F., Grubmüller, H., Seidel, C.A. & Oesterhelt, F. Single-molecule FRET measures bends and kinks in DNA. Proc. Natl. Acad. Sci. USA 105, 18337–18342 (2008).

    Article  CAS  Google Scholar 

  31. Stein, I.H., Schüller, V., Böhm, P., Tinnefeld, P. & Liedl, T. Single-molecule FRET ruler based on rigid DNA origami blocks. Chemphyschem 12, 689–695 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant SE 1646/2-1 from the Deutsche Forschungsgemeinschaft (DFG) and a starting grant from the European Research Council (no. 261224) to R.S. We gratefully acknowledge L. Pönitz and C. Scholz for technical assistance; H. Brutzer, D. Kauert and D. Klaue for critical reading of the manuscript; and W. Staroske and M. Burkhardt for support in performing single-molecule FRET experiments.

Author information

Authors and Affiliations

Authors

Contributions

N.L., S.K. and I.R. conducted the experiments; N.L. and R.S. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Ralf Seidel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzzietti, N., Knappe, S., Richter, I. et al. Nicking enzyme–based internal labeling of DNA at multiple loci. Nat Protoc 7, 643–653 (2012). https://doi.org/10.1038/nprot.2012.008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.008

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing