Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Meta-analysis of untargeted metabolomic data from multiple profiling experiments

Abstract

metaXCMS is a software program for the analysis of liquid chromatography/mass spectrometry–based untargeted metabolomic data. It is designed to identify the differences between metabolic profiles across multiple sample groups (e.g., 'healthy' versus 'active disease' versus 'inactive disease'). Although performing pairwise comparisons alone can provide physiologically relevant data, these experiments often result in hundreds of differences, and comparison with additional biologically meaningful sample groups can allow for substantial data reduction. By performing second-order (meta-) analysis, metaXCMS facilitates the prioritization of interesting metabolite features from large untargeted metabolomic data sets before the rate-limiting step of structural identification. Here we provide a detailed step-by-step protocol for going from raw mass spectrometry data to metaXCMS results, visualized as Venn diagrams and exported Microsoft Excel spreadsheets. There is no upper limit to the number of sample groups or individual samples that can be compared with the software, and data from most commercial mass spectrometers are supported. The speed of the analysis depends on computational resources and data volume, but will generally be less than 1 d for most users. metaXCMS is freely available at http://metlin.scripps.edu/metaxcms/.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction to pairwise and second-order comparison.
Figure 2: Data reduction by meta-analysis.
Figure 3: Visualization of theoretical meta-analysis applied to identify biomarkers of disease severity.
Figure 4: Overview of the computational workflow.
Figure 5: MSConvertGUI.exe, the graphical user interface of the ProteoWizard file converter.
Figure 6: Retention-time correction curves generated by XCMS.
Figure 7: Graphical user interface of metaXCMS.
Figure 8: Graphical user interface of metaXCMS.
Figure 9: Graphical user interface of metaXCMS.
Figure 10: Graphical user interface of metaXCMS.

Similar content being viewed by others

References

  1. Weckwerth, W. Unpredictability of metabolism—the key role of metabolomics science in combination with next-generation genome sequencing. Anal. Bioanal. Chem. 400, 1967–1978 (2011).

    Article  CAS  Google Scholar 

  2. Baker, M. Metabolomics: from small molecules to big ideas. Nat. Meth. 8, 117–121 (2011).

    Article  CAS  Google Scholar 

  3. Yanes, O. et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 6, 411–417 (2010).

    Article  CAS  Google Scholar 

  4. Wikoff, W.R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 106, 3698–3703 (2009).

    Article  CAS  Google Scholar 

  5. Wikoff, W.R., Pendyala, G., Siuzdak, G. & Fox, H.S. Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques. J. Clin. Invest. 118, 2661–2669 (2008).

    Article  CAS  Google Scholar 

  6. Vinayavekhin, N. & Saghatelian, A. Untargeted metabolomics. Curr. Protoc. Mol. Biol. 90, 30.1.1–30.1.24 (2010).

    Google Scholar 

  7. Wikoff, W.R., Nagle, M.A., Kouznetsova, V.L., Tsigelny, I.F. & Nigam, S.K. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J. Proteome Res. 10, 2842–2851 (2011).

    Article  CAS  Google Scholar 

  8. Vinayavekhin, N., Homan, E.A. & Saghatelian, A. Exploring disease through metabolomics. ACS Chem. Biol. 5, 91–103 (2010).

    Article  CAS  Google Scholar 

  9. McKnight, S.L. On getting there from here. Science 330, 1338–1339 (2010).

    Article  CAS  Google Scholar 

  10. Wang, T.J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    Article  Google Scholar 

  11. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  Google Scholar 

  12. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  Google Scholar 

  13. Olszewski, K.L. et al. Branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature 466, 774–778 (2010).

    Article  CAS  Google Scholar 

  14. Fernie, A.R., Trethewey, R.N., Krotzky, A.J. & Willmitzer, L. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769 (2004).

    Article  CAS  Google Scholar 

  15. Lu, W. et al. Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand-alone Orbitrap mass spectrometer. Anal. Chem. 82, 3212–3221 (2010).

    Article  CAS  Google Scholar 

  16. Buscher, J.M., Czernik, D., Ewald, J.C., Sauer, U. & Zamboni, N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal. Chem. 81, 2135–2143 (2009).

    Article  CAS  Google Scholar 

  17. Smith, C.A., Want, E.J., O′Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  Google Scholar 

  18. Yanes, O., Tautenhahn, R., Patti, G.J. & Siuzdak, G. Expanding coverage of the metabolome for global metabolite profiling. Anal. Chem. 83, 2152–2161 (2011).

    Article  CAS  Google Scholar 

  19. Want, E.J. et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem. 78, 743–752 (2006).

    Article  CAS  Google Scholar 

  20. Lommen, A. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81, 3079–3086 (2009).

    Article  CAS  Google Scholar 

  21. Katajamaa, M., Miettinen, J. & Oresic, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636 (2006).

    Article  CAS  Google Scholar 

  22. Böttcher, C. et al. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21, 1830–1845 (2009).

    Article  Google Scholar 

  23. Tautenhahn, R. et al. metaXCMS: second-order analysis of untargeted metabolomics data. Anal. Chem. 83, 696–700 (2011).

    Article  CAS  Google Scholar 

  24. Normand, S.L. Meta-analysis: formulating, evaluating, combining, and reporting. Stat. Med. 18, 321–359 (1999).

    Article  CAS  Google Scholar 

  25. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  Google Scholar 

  26. de Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    Article  CAS  Google Scholar 

  27. de Bakker, P.I. et al. Efficiency and power in genetic association studies. Nat. Genet. 37, 1217–1223 (2005).

    Article  CAS  Google Scholar 

  28. Chu, Y.C. et al. Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund′s adjuvant-induced persistent pain. Pain 119, 113–123 (2005).

    Article  CAS  Google Scholar 

  29. Bolcskei, K., Petho, G. & Szolcsanyi, J. Noxious heat threshold measured with slowly increasing temperatures: novel rat thermal hyperalgesia models. Methods Mol. Biol. 617, 57–66 (2010).

    Article  Google Scholar 

  30. Kyburz, D. & Corr, M. The KRN mouse model of inflammatory arthritis. Springer Semin. Immunopathol. 25, 79–90 (2003).

    Article  CAS  Google Scholar 

  31. Goo, Y.A. et al. Proteomic analysis of an extreme halophilic archaeon, Halobacterium sp. NRC-1. Mol. Cell Proteomics 2, 506–524 (2003).

    Article  CAS  Google Scholar 

  32. Kaur, A. et al. A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res. 16, 841–854 (2006).

    Article  CAS  Google Scholar 

  33. Branca, F., Hanley, A.B., Pool-Zobel, B. & Verhagen, H. Biomarkers in disease and health. Br. J. Nutr. 86 (suppl. 1): S55–S92 (2001).

    Article  CAS  Google Scholar 

  34. Cantor, R.M., Lange, K. & Sinsheimer, J.S. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am. J. Hum. Genet. 86, 6–22 (2010).

    Article  CAS  Google Scholar 

  35. Crews, B. et al. Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry–based metabolomics data. Anal. Chem. 81, 8538–8544 (2009).

    Article  CAS  Google Scholar 

  36. Kalisiak, J. et al. Identification of a new endogenous metabolite and the characterization of its protein interactions through an immobilization approach. J. Am. Chem. Soc. 131, 378–386 (2009).

    Article  CAS  Google Scholar 

  37. Wise, L.H., Lanchbury, J.S. & Lewis, C.M. Meta-analysis of genome searches. Ann. Hum. Genet. 63, 263–272 (1999).

    Article  CAS  Google Scholar 

  38. Evangelou, E., Maraganore, D.M. & Ioannidis, J.P. Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease. PLoS ONE 2, e196 (2007).

    Article  Google Scholar 

  39. Want, E.J., Nordstrom, A., Morita, H. & Siuzdak, G. From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J. Proteome Res. 6, 459–468 (2007).

    Article  CAS  Google Scholar 

  40. Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high-resolution LC/MS. BMC Bioinformatics 9, 504 (2008).

    Article  Google Scholar 

  41. Prince, J.T. & Marcotte, E.M. Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Anal. Chem. 78, 6140–6152 (2006).

    Article  CAS  Google Scholar 

  42. Masson, P., Spagou, K., Nicholson, J.K. & Want, E.J. Technical and biological variation in UPLC-MS–based untargeted metabolic profiling of liver extracts: application in an experimental toxicity study on galactosamine. Anal. Chem. 83, 1116–1123 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the California Institute of Regenerative Medicine (grant TR1-01219), the US National Institutes of Health (grants R24 EY017540-04, P30 MH062261-10 and P01 DA026146-02) and a US National Institutes of Health/National Institute on Aging grant (L30 AG0 038036; to G.J.P.). Financial support was also received from the US Department of Energy (grants FG02-07ER64325 and DE-AC0205CH11231).

Author information

Authors and Affiliations

Authors

Contributions

G.J.P., R.T. and G.S. contributed to the development of the protocol and the writing of the manuscript.

Corresponding author

Correspondence to Gary Siuzdak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patti, G., Tautenhahn, R. & Siuzdak, G. Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nat Protoc 7, 508–516 (2012). https://doi.org/10.1038/nprot.2011.454

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.454

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research