Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix

Abstract

We describe here a protocol for culturing epicardial cells from adult zebrafish hearts, which have a unique regenerative capacity after injury. Briefly, zebrafish hearts first undergo ventricular amputation or sham operation. Next, the hearts are excised and explanted onto fibrin gels prepared in advance in a multiwell tissue culture plate. The procedure allows the epicardial cells to outgrow from the ventricle onto a fibrin matrix in vitro. This protocol differs from those used in other organisms by using a fibrin gel to mimic blood clots that normally form after injury and that are essential for proper cell migration. The culture procedure can be accomplished within 5 h; epicardial cells can be obtained within 24–48 h and can be maintained in culture for 5–6 d. This protocol can be used to investigate the mechanisms underlying epicardial cell migration, proliferation and epithelial-to-mesenchymal transition during heart regeneration, homeostatic cardiac growth or other physiological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Dissection of the heart from adult zebrafish.
Figure 3: Explant culture of adult zebrafish hearts on fibrin gels.
Figure 4: Epicardial cell outgrowth on fibrin gels.
Figure 5: Proliferation of epicardial cells on fibrin gels.

Similar content being viewed by others

References

  1. Hu, N., Yost, H.J. & Clark, E.B. Cardiac morphology and blood pressure in the adult zebrafish. Anat. Rec. 264, 1–12 (2001).

    Article  CAS  Google Scholar 

  2. Viragh, S. & Challice, C.E. The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat. Rec. 201, 157–168 (1981).

    Article  CAS  Google Scholar 

  3. Sucov, H.M., Gu, Y., Thomas, S., Li, P. & Pashmforoush, M. Epicardial control of myocardial proliferation and morphogenesis. Pediatr. Cardiol. 30, 617–625 (2009).

    Article  Google Scholar 

  4. Poss, K.D., Wilson, L.G. & Keating, M.T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  Google Scholar 

  5. Raya, A. et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc. Natl. Acad. Sci. USA 100 (Suppl 1): 11889–11895 (2003).

    Article  CAS  Google Scholar 

  6. Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    Article  CAS  Google Scholar 

  7. Lien, C.L., Schebesta, M., Makino, S., Weber, G.J. & Keating, M.T. Gene expression analysis of zebrafish heart regeneration. PLoS Biol. 4, e260 (2006).

    Article  Google Scholar 

  8. Wills, A.A., Holdway, J.E., Major, R.J. & Poss, K.D. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135, 183–192 (2008).

    Article  CAS  Google Scholar 

  9. Kim, J. et al. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc. Natl. Acad. Sci. USA 107, 17206–17210 (2010).

    Article  CAS  Google Scholar 

  10. Wick, N. et al. Quantitative measurement of cell migration using time-lapse videomicroscopy and non-linear system analysis. Histochem. Cell Biol. 119, 15–20 (2003).

    CAS  PubMed  Google Scholar 

  11. Pankov, R. et al. A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170, 793–802 (2005).

    Article  CAS  Google Scholar 

  12. Compton, L.A., Potash, D.A., Mundell, N.A. & Barnett, J.V. Transforming growth factor-β induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells. Dev. Dyn. 235, 82–93 (2006).

    Article  CAS  Google Scholar 

  13. Austin, A.F., Compton, L.A., Love, J.D., Brown, C.B. & Barnett, J.V. Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFβ. Dev. Dyn. 237, 366–376 (2008).

    Article  CAS  Google Scholar 

  14. Sridurongrit, S., Larsson, J., Schwartz, R., Ruiz-Lozano, P. & Kaartinen, V. Signaling via the Tgf-β type I receptor Alk5 in heart development. Dev. Biol. 322, 208–218 (2008).

    Article  CAS  Google Scholar 

  15. Chen, T.H. et al. Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev. Biol. 250, 198–207 (2002).

    Article  CAS  Google Scholar 

  16. Wolberg, A.S. Thrombin generation and fibrin clot structure. Blood Rev. 21, 131–142 (2007).

    Article  CAS  Google Scholar 

  17. Tuan, T.L., Song, A., Chang, S., Younai, S. & Nimni, M.E. In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp. Cell Res. 223, 127–134 (1996).

    Article  CAS  Google Scholar 

  18. Doolittle, R.F. Fibrinogen and fibrin. Annu. Rev. Biochem. 53, 195–229 (1984).

    Article  CAS  Google Scholar 

  19. Hamdi, H. et al. Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann. Thorac. Surg. 87, 1196–1203 (2009).

    Article  Google Scholar 

  20. Smith, J.D., Melhem, M.E., Magge, K.T., Waggoner, A.S. & Campbell, P.G. Improved growth factor directed vascularization into fibrin constructs through inclusion of additional extracellular molecules. Microvasc. Res. 73, 84–94 (2007).

    Article  CAS  Google Scholar 

  21. Itabashi, Y. et al. A new method for manufacturing cardiac cell sheets using fibrin-coated dishes and its electrophysiological studies by optical mapping. Artif. Organs 29, 95–103 (2005).

    Article  Google Scholar 

  22. Nesbitt, T.L. et al. Coronary endothelial proliferation and morphogenesis are regulated by a VEGF-mediated pathway. Dev. Dyn. 238, 423–430 (2009).

    Article  Google Scholar 

  23. Karuparthi, P., Nickelson, K. & Baklanov, D. Effects of endothelial growth media on proepicardial cell gene expression and morphogenesis in 3D collagen matrices. In Vitro Cell Dev. Biol. Anim. 45, 633–641 (2009).

    Article  Google Scholar 

  24. Perner, B., Englert, C. & Bollig, F. The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev. Biol. 309, 87–96 (2007).

    Article  CAS  Google Scholar 

  25. Burns, C.G. et al. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat. Chem. Biol. 1, 263–264 (2005).

    Article  CAS  Google Scholar 

  26. Lawson, N.D. & Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    Article  CAS  Google Scholar 

  27. Brand, M., Granato, M. & Nusslein-Volhard, C. Chapter 1: keeping and raising zebrafish. in Zebrafish 12–14 (Oxford University Press, 2002).

  28. Kikuchi, K. et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895–2902 (2011).

    Article  CAS  Google Scholar 

  29. Poon, K.L., Liebling, M., Kondrychyn, I., Garcia-Lecea, M. & Korzh, V. Zebrafish cardiac enhancer trap lines: new tools for in vivo studies of cardiovascular development and disease. Dev. Dyn. 239, 914–926 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the American Heart Association (0730214N to C.-L.L.), National Heart, Lung, and Blood Institute Grants (R01HL096121 to C.-L.L. and R01HL096121S1 to C.-L.L. for N.R.), the Wright Foundation (to C.-L.L.), a Research Career Development Award from the Saban Research Institute (C.-L.L.), a National Institute of General Medical Sciences Grant (R01GM055081 to T.-L.T.) and California Institute for Regenerative Medicine (CIRM) postdoctoral fellowships (J.K.). We thank Q. Wu for excellent technical support, E. Fernandez for helping with taking the video and M. Chao for critically reviewing the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Contributions

J.K., T.-L.T. and C.-L.L. designed the study; J.K., N.R. and Y.H. carried out the experiments; and J.K., N.R., T.-L.T. and C.-L.L. wrote the manuscript.

Corresponding author

Correspondence to Ching-Ling Lien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Dissection of zebrafish to collect the heart for culture. (MOV 4391 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Rubin, N., Huang, Y. et al. In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix. Nat Protoc 7, 247–255 (2012). https://doi.org/10.1038/nprot.2011.440

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.440

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing