Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy

Abstract

Quantitative single-cell time-lapse microscopy is a powerful method for analyzing gene circuit dynamics and heterogeneous cell behavior. We describe the application of this method to imaging bacteria by using an automated microscopy system. This protocol has been used to analyze sporulation and competence differentiation in Bacillus subtilis, and to quantify gene regulation and its fluctuations in individual Escherichia coli cells. The protocol involves seeding and growing bacteria on small agarose pads and imaging the resulting microcolonies. Images are then reviewed and analyzed using our laboratory's custom MATLAB analysis code, which segments and tracks cells in a frame-to-frame method. This process yields quantitative expression data on cell lineages, which can illustrate dynamic expression profiles and facilitate mathematical models of gene circuits. With fast-growing bacteria, such as E. coli or B. subtilis, image acquisition can be completed in 1 d, with an additional 1–2 d for progressing through the analysis procedure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Slide preparation.
Figure 2: Microscope station for time-lapse microscopy.
Figure 3: Analysis of time-lapse movie reveals single-cell dynamics of a B. subtilis stress response.

References

  1. 1

    Elowitz, M.B., Levine, A.J., Siggia, E.D. & Swain, P.S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Ratcliff, W.C. & Denison, R.F. Individual-level bet hedging in the bacterium Sinorhizobium meliloti. Curr. Biol. 20, 1740–1744 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics 167, 523–530 (2004).

    Article  Google Scholar 

  5. 5

    Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Veening, J.W. et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl. Acad. Sci. USA 105, 4393–4398 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Ferrell, J.E. Jr. & Machleder, E.M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280, 895–898 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Skotheim, J.M., Di Talia, S., Siggia, E.D. & Cross, F.R. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 454, 291–296 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Shimomura, O., Johnson, F.H. & Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell Comp. Physiol. 59, 223–239 (1962).

    CAS  Article  Google Scholar 

  10. 10

    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–449 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Dunlop, M.J., Cox, R.S. III, Levine, J.H., Murray, R.M. & Elowitz, M.B. Regulatory activity revealed by dynamic correlations in gene expression noise. Nat. Genet. 40, 1493–1498 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Sprinzak, D. et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86–90 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Accurate prediction of gene feedback circuit behavior from component properties. Mol. Syst. Biol. 3, 143 (2007).

    Article  Google Scholar 

  19. 19

    Suel, G.M., Garcia-Ojalvo, J., Liberman, L.M. & Elowitz, M.B. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545–550 (2006).

    Article  Google Scholar 

  20. 20

    Suel, G.M., Kulkarni, R.P., Dworkin, J., Garcia-Ojalvo, J. & Elowitz, M.B. Tunability and noise dependence in differentiation dynamics. Science 315, 1716–1719 (2007).

    Article  Google Scholar 

  21. 21

    Eldar, A. et al. Partial penetrance facilitates developmental evolution in bacteria. Nature 460, 510–514 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Freed, N.E. et al. A simple screen to identify promoters conferring high levels of phenotypic noise. PLoS Genet. 4, e1000307 (2008).

    Article  Google Scholar 

  24. 24

    Stewart, E.J., Madden, R., Paul, G. & Taddei, F. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3, e45 (2005).

    Article  Google Scholar 

  25. 25

    Robert, L. et al. Pre-dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch. Mol. Syst. Biol. 6, 357 (2010).

    Article  Google Scholar 

  26. 26

    Sliusarenko, O., Heinritz, J., Emonet, T. & Jacobs-Wagner, C. High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol. Microbiol. 80, 612–627 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Snapp, E.L. Fluorescent proteins: a cell biologist's user guide. Trends Cell Biol. 19, 649–655 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Gor, V., Bacarian, T., Elowitz, M. & Mjolsness, E. Tracking cell signals in fluorescent images. Computer Vision Methods for Bioinformatics (CVMB) workshop, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, California, USA. 2005.

  30. 30

    Spizizen, J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. Natl. Acad. Sci. USA 44, 1072–1078 (1958).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Park and additional Elowitz Lab members (former and present) for helpful comments regarding the manuscript. This research was supported by US National Institutes of Health grant R01GM07977, the National Science Foundation CAREER Award 0644463 and the Packard Foundation.

Author information

Affiliations

Authors

Contributions

J.W.Y., J.C.W.L. and M.B.E. wrote and developed the protocol. A.A. helped with developing a website and modifying the Schnitzcells software package for public release. N.R., P.S.S. and M.B.E. were major original developers of Schnitzcells, and T.B. and E.M. optimized the tracking algorithm.

Corresponding author

Correspondence to Michael B Elowitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Preparation of agarose pads. This video depicts the process of making agarose pads, as described in the Reagent Setup above, as well as illustrating how bacteria are seeded onto smaller agarose pads and transferred to the imaging dish. Some parts of the video are shown faster than real time. (MOV 25981 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Young, J., Locke, J., Altinok, A. et al. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat Protoc 7, 80–88 (2012). https://doi.org/10.1038/nprot.2011.432

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing