Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Comprehensive qPCR profiling of gene expression in single neuronal cells

Abstract

A major challenge in neuronal stem cell biology lies in characterization of lineage-specific reprogrammed human neuronal cells, a process that necessitates the use of an assay sensitive to the single-cell level. Single-cell gene profiling can provide definitive evidence regarding the conversion of one cell type into another at a high level of resolution. The protocol we describe uses Fluidigm Biomark dynamic arrays for high-throughput expression profiling from single neuronal cells, assaying up to 96 independent samples with up to 96 quantitative PCR (qPCR) probes (equivalent to 9,216 reactions) in a single experiment, which can be completed within 2–3 d. The protocol enables simple and cost-effective profiling of several hundred transcripts from a single cell, and it could have numerous utilities.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A schematic workflow for single-cell gene profiling.
Figure 2: Micromanipulator-assisted manual collection of single neurons.
Figure 3: Assessment of primer efficiency and specificity.
Figure 4: Single-cell gene expression profiling using Fluidigm dynamic arrays.

References

  1. Dolmetsch, R. & Geschwind, D.H. The human brain in a dish: the promise of iPSC-derived neurons. Cell 145, 831–834 (2011).

    CAS  Article  Google Scholar 

  2. Li, H.H. et al. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335, 414–417 (1988).

    CAS  Article  Google Scholar 

  3. Cauli, B. et al. Molecular and physiological diversity of cortical nonpyramidal cells. J. Neurosci. 17, 3894–3906 (1997).

    CAS  Article  Google Scholar 

  4. Cauli, B. & Lambolez, B. in Unravelling Single Cell Genomics 81–92 (The Royal Society of Chemistry, 2010).

  5. Koirala, S. & Corfas, G. Identification of novel glial genes by single-cell transcriptional profiling of Bergmann glial cells from mouse cerebellum. PLoS One 5, e9198 (2011).

    Article  Google Scholar 

  6. Lambolez, B. et al. AMPA receptor subunits expressed by single Purkinje cells. Neuron 9, 247–258 (1992).

    CAS  Article  Google Scholar 

  7. Surmeier, D.J. et al. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc. Natl. Acad. Sci. USA 89, 10178–10182 (1992).

    CAS  Article  Google Scholar 

  8. Tietjen, I., Rihel, J. & Dulac, C.G. Single-cell transcriptional profiles and spatial patterning of the mammalian olfactory epithelium. Int. J. Dev. Biol. 49, 201–207 (2005).

    CAS  Article  Google Scholar 

  9. Tietjen, I. et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38, 161–175 (2003).

    CAS  Article  Google Scholar 

  10. Mackler, S.A., Brooks, B.P. & Eberwine, J.H. Stimulus-induced coordinate changes in mRNA abundance in single postsynaptic hippocampal CA1 neurons. Neuron 9, 539–548 (1992).

    CAS  Article  Google Scholar 

  11. Mackler, S.A. & Eberwine, J.H. Diversity of glutamate receptor subunit mRNA expression within live hippocampal CA1 neurons. Mol. Pharmacol. 44, 308–315 (1993).

    CAS  PubMed  Google Scholar 

  12. Ginsberg, S.D. et al. Single-cell gene expression analysis: implications for neurodegenerative and neuropsychiatric disorders. Neurochem. Res. 29, 1053–1064 (2004).

    CAS  Article  Google Scholar 

  13. Sucher, N.J. & Deitcher, D.L. PCR and patch-clamp analysis of single neurons. Neuron 14, 1095–1100 (1995).

    CAS  Article  Google Scholar 

  14. Lao, K.Q. et al. mRNA-sequencing whole transcriptome analysis of a single cell on the SOLiD system. J. Biomol. Tech. 20, 266–271 (2009).

    PubMed  PubMed Central  Google Scholar 

  15. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    CAS  Article  Google Scholar 

  16. White, A.K. et al. High-throughput microfluidic single-cell RT-qPCR. Proc. Natl. Acad. Sci. 108, 13999–14004 (2011).

    CAS  Article  Google Scholar 

  17. Spurgeon, S.L., Jones, R.C. & Ramakrishnan, R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One 3, e1662 (2008).

    Article  Google Scholar 

  18. Pang, Z.P. et al. Induction of human neuronal cells by defined transcription factors. Nature 476, 220–223 (2011).

    CAS  Article  Google Scholar 

  19. Yoo, A.S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    CAS  Article  Google Scholar 

  20. Narsinh, K.H. et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J. Clin. Invest. 121, 1217–1221 (2011).

    CAS  Article  Google Scholar 

  21. Liss, B. & Roeper, J. Correlating function and gene expression of individual basal ganglia neurons. Trends Neurosci. 27, 475–481 (2004).

    CAS  Article  Google Scholar 

  22. Weng, J.Y., Lin, Y.C. & Lien, C.C. Cell type-specific expression of acid-sensing ion channels in hippocampal interneurons. J. Neurosci. 30, 6548–6558 (2010).

    CAS  Article  Google Scholar 

  23. McClung, C.A. & Nestler, E.J. Neuroplasticity mediated by altered gene expression. Neuropsychopharmacology 33, 3–17 (2008).

    CAS  Article  Google Scholar 

  24. Lammel, S., Ion, D.I., Roeper, J. & Malenka, R.C. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70, 855–862 (2011).

    CAS  Article  Google Scholar 

  25. Lobo, M.K. et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385–390 (2010).

    CAS  Article  Google Scholar 

  26. Allen, S.E., Darnell, R.B. & Lipscombe, D. The neuronal splicing factor Nova controls alternative splicing in N-type and P-type CaV2 calcium channels. Channels (Austin) 4, 483–489 (2010).

    CAS  Article  Google Scholar 

  27. Bharadwaj, R. & Kolodkin, A.L. Descrambling Dscam diversity. Cell 125, 421–424 (2006).

    CAS  Article  Google Scholar 

  28. Hodne, K., Haug, T.M. & Weltzien, F.A. Single-cell qPCR on dispersed primary pituitary cells—an optimized protocol. BMC Mol. Biol. 11, 82 (2010).

    Article  Google Scholar 

  29. Morris, J., Singh, J.M. & Eberwine, J.H. Transcriptome analysis of single cells. J. Vis. Exp. published online, doi:10.3791/2634 (2011).

  30. Esumi, S., Kaneko, R., Kawamura, Y. & Yagi, T. Split single-cell RT-PCR analysis of Purkinje cells. Nat. Protoc. 1, 2143–2151 (2006).

    CAS  Article  Google Scholar 

  31. Li, Y. et al. An improved one-tube RT-PCR protocol for analyzing single-cell gene expression in individual mammalian cells. Anal. Bioanal. Chem. 397, 1853–1859 (2010).

    CAS  Article  Google Scholar 

  32. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  Article  Google Scholar 

  33. Bustin, S.A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    CAS  Article  Google Scholar 

  34. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  35. Thornton, B. & Basu, C. Real-time PCR (qPCR) primer design using free online software. Biochem. Mol. Biol. Educ. 39, 145–154 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

A.C. acknowledges the generous support of the AXA Research Fund. Z.P.P. is supported by the Brain and Behavior Research Foundation (National Alliance for Research on Schizophrenia and Depression (NARSAD) Young Investigator Award) and the Robert Wood Johnson Foundation. We thank N. Yang for help in experimental work. We thank S. Chavez for initial instruction in the use of the Fluidigm Biomark system, and R. Reijo Pera for access to the Fluidigm Biomark system in her lab. We also thank members of the Malenka and Südhof labs for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and Z.P.P. conceived the protocol, collected the data, presented the figures and wrote the manuscript. T.C.S., M.W. and R.C.M. supervised the project and contributed to the writing.

Corresponding authors

Correspondence to Ami Citri, Zhiping P Pang or Robert C Malenka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Citri, A., Pang, Z., Südhof, T. et al. Comprehensive qPCR profiling of gene expression in single neuronal cells. Nat Protoc 7, 118–127 (2012). https://doi.org/10.1038/nprot.2011.430

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.430

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing