Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using the Drosophila melanogaster D17-c3 cell culture system to study cell motility

Abstract

Cultured Drosophila melanogaster S2 and S2R+ cell lines have become important tools for uncovering fundamental aspects of cell biology as well as for gene discovery. Despite their utility, these cell lines are nonmotile and cannot build polarized structures or cell-cell contacts. Here we outline a previously isolated, but uncharacterized, Drosophila cell line named Dm-D17-c3 (or D17). These cells spread and migrate in culture, form cell-cell junctions and are susceptible to RNA interference (RNAi). Using this protocol, we describe how investigators, upon receiving cells from the Bloomington stock center, can culture cells and prepare the necessary reagents to plate and image migrating D17 cells; they can then be used to examine intracellular dynamics or observe loss-of-function RNAi phenotypes using an in vitro scratch or wound healing assay. From first thawing frozen ampules of D17 cells, investigators can expect to begin assaying RNAi phenotypes in D17 cells within roughly 2–3 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: D17-c3 (D17) is a motile Drosophila melanogaster cell line.
Figure 2: Dynamic protein localization within a migrating D17 cell.
Figure 3: Immunofluorescence localization of cell-cell junction protein Canoe (Cno) in D17 cells.

Similar content being viewed by others

References

  1. Schneider, I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morphol. 27, 353–365 (1972).

    CAS  PubMed  Google Scholar 

  2. Yanagawa, S., Lee, J.S. & Ishimoto, A. Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling. J. Biol. Chem. 273, 32353–32359 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rogers, S.L. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell. Biol. 158, 873–884 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramadan, N., Flockhart, I., Booker, M., Perrimon, N. & Mathey-Prevot, B. Design and implementation of high-throughput RNAi screens in cultured Drosophila cells. Nat. Protoc. 2, 2245–2264 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  7. Rogers, G.C., Rusan, N.M., Peifer, M. & Rogers, S.L. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol. Biol. Cell. 19, 3163–3178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wheeler, S.R. et al. Neurexin IV and Wrapper interactions mediate Drosophila midline glial migration and axonal ensheathment. Development 136, 1147–1157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnston, C.A., Hirono, K., Prehoda, K.E. & Doe, C.Q. Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 138, 1150–1163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang, L., Rogers, S.L. & Crews, S.T. The Drosophila Dead end Arf-like3 GTPase controls vesicle trafficking during tracheal fusion cell morphogenesis. Dev. Biol. 311, 487–499 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dorer, M.S., Kirton, D., Bader, J.S. & Isberg, R.R. RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS. Pathog. 2, e34 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wagner, E.J. et al. A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing. Mol. Cell. 28, 692–699 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. D'Ambrosio, M.V. & Vale, R.D. A whole genome RNAi screen of Drosophila S2 cell spreading performed using automated computational image analysis. J. Cell. Biol. 191, 471–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ui, K., Ueda, R. & Miyake, T. Cell lines from imaginal discs of Drosophila melanogaster. In Vitro Cell. Dev. Biol. 23, 707–711 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Wood, W., Faria, C. & Jacinto, A. Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster. J. Cell. Biol. 173, 405–416 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wood, W. & Jacinto, A. Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat. Rev. Mol. Cell. Biol. 8, 542–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Celniker, S.E. et al. Unlocking the secrets of the genome. Nature 459, 927–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rehorn, K.P., Thelen, H., Michelson, A.M. & Reuter, R. A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development 122, 4023–4031 (1996).

    CAS  PubMed  Google Scholar 

  19. Cherbas, L. et al. The transcriptional diversity of 25 Drosophila cell lines. Genome Res. 21, 301–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fasano, L. et al. The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell 64, 63–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Rogers, S.L. & Rogers, G.C. Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy. Nat. Protoc. 3, 606–611 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, D. et al. Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration. Nat. Cell. Biol. 13, 361–370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Drechsel, D.N., Hyman, A.A., Hall, A. & Glotzer, M. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr. Biol. 7, 12–23 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Paladi, M. & Tepass, U. Function of Rho GTPases in embryonic blood cell migration in Drosophila. J. Cell. Sci. 117, 6313–6326 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Stramer, B. Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J. Cell. Biol. 168, 567–573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fessler, J.H., Nelson, R.E. & Fessler, L.I. Preparation of extracellular matrix. Methods Cell Biol. 44, 303–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Liang, C., Park, A.Y. & Guan, J. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Yarrow, J.C., Perlman, Z.E., Westwood, N.J. & Mitchison, T.J. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol. 4, 21 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vitorino, P. & Meyer, T. Modular control of endothelial sheet migration. Genes Dev. 22, 3268–3281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Rogers lab for helpful discussions regarding the application of this protocol. We would also like to acknowledge M. Peifer for the generous gift of Canoe antibody and the DGRC for cell lines and helpful protocols.

Author information

Authors and Affiliations

Authors

Contributions

J.D.C. performed the protocol under the supervision of S.L.R. J.D.C. and S.L.R. wrote the protocol manuscript.

Corresponding author

Correspondence to Stephen L Rogers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1. D17 wound migration.

D17 cells treated with control dsRNA and imaged in intervals of 10 minutes over 16 hours. (MOV 8333 kb)

Supplementary Video 2. D17 single cell migration.

D17 cell transiently transfected with pMT GFP-Orbit and imaged every 3 seconds using spinning disc confocal microscopy. GFP-Orbit is a Drosophila microtubule plus end protein that labels the growing ends of microtubules in cells. (MOV 1660 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currie, J., Rogers, S. Using the Drosophila melanogaster D17-c3 cell culture system to study cell motility. Nat Protoc 6, 1632–1641 (2011). https://doi.org/10.1038/nprot.2011.397

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.397

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing