Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry

Abstract

Archived formalin-fixed paraffin-embedded (FFPE) tissue collections represent a valuable informational resource for proteomic studies. Multiple FFPE core biopsies can be assembled in a single block to form tissue microarrays (TMAs). We describe a protocol for analyzing protein in FFPE-TMAs using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). The workflow incorporates an antigen retrieval step following deparaffinization, in situ trypsin digestion, matrix application and then mass spectrometry signal acquisition. The direct analysis of FFPE-TMA tissue using IMS allows direct analysis of multiple tissue samples in a single experiment without extraction and purification of proteins. The advantages of high speed and throughput, easy sample handling and excellent reproducibility make this technology a favorable approach for the proteomic analysis of clinical research cohorts with large sample numbers. For example, TMA analysis of 300 FFPE cores would typically require 6 h of total time through data acquisition, not including data analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow for investigation of peptide content in FFPE-TMA.
Figure 2: Trypsin and matrix application.
Figure 3: Protein identification workflow.
Figure 4: Portrait spotting setup.
Figure 5: IMS correlation with pathological diagnosis.
Figure 6: MALDI images of three tryptic peptides originating from heat shock protein β-1 detected in two of three squamous cell carcinoma core biopsies analyzed in a TMA.

Similar content being viewed by others

References

  1. Metz, B. et al. Identification of formaldehyde-induced modifications in proteins: Reactions with insulin. Bioconjugate Chem. 17, 815–822 (2006).

    Article  CAS  Google Scholar 

  2. Rahimi, F., Shepherd, C.E., Halliday, G.M., Geczy, C.L. & Raftery, M.J. Antigen-epitope retrieval to facilitate proteomic analysis of formalin-fixed archival brain tissue. Anal. Chem. 78, 7216–7221 (2006).

    Article  CAS  Google Scholar 

  3. Werner, M., Chott, A., Fabiano, A. & Battifora, H. Effect of formalin tissue fixation and processing on immunohistochemistry. Am. J. Surg. Pathol. 24, 1016–1019 (2000).

    Article  CAS  Google Scholar 

  4. Shi, S.R., Key, M.E. & Kalra, K.L. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J. Histochem. Cytochem. 39, 741–748 (1991).

    Article  CAS  Google Scholar 

  5. Groseclose, M.R., Massion, P.P., Chaurand, P. & Caprioli, R.M. High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8, 3715–3724 (2008).

    Article  CAS  Google Scholar 

  6. Groseclose, M.R., Andersson, M., Hardesty, W.M. & Caprioli, R.M. Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J. Mass Spectrom. 42, 254–262 (2007).

    Article  CAS  Google Scholar 

  7. Schwartz, S.A., Reyzer, M.L. & Caprioli, R.M. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J. Mass Spectrom. 38, 699–708 (2003).

    Article  CAS  Google Scholar 

  8. Chaurand, P., Norris, J.L., Cornett, D.S., Mobley, J.A. & Caprioli, R.M. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J. Proteome Res. 5, 2889–2900 (2006).

    Article  CAS  Google Scholar 

  9. Lemaire, R. et al. Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J. Proteome Res. 6, 1295–1305 (2007).

    Article  CAS  Google Scholar 

  10. Uhlen, M. & Ponten, F. Antibody-based proteomics for human tissue profiling. Mol. Cell Proteomics 4, 384–393 (2005).

    Article  CAS  Google Scholar 

  11. Wessels, J.T. et al. In vivo imaging in experimental preclinical tumor research-a review. Cytometry A 71, 542–549 (2007).

    Article  CAS  Google Scholar 

  12. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  CAS  Google Scholar 

  13. Pepperkok, R. & Ellenberg, J. High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell. Biol. 7, 690–696 (2006).

    Article  CAS  Google Scholar 

  14. Becker, K.F. & Taylor, C.R. 'Liquid morphology': immunochemical analysis of proteins extracted from formalin-fixed paraffin-embedded tissues: combining proteomics with immunohistochemistry. Appl. Immunohistochem. Mol. Morphol. 19, 1–9 (2011).

    Article  CAS  Google Scholar 

  15. Teruya-Feldstein, J. The immunohistochemistry laboratory: looking at molecules and preparing for tomorrow. Arch. Pathol. Lab. Med. 134, 1659–1665 (2010).

    PubMed  Google Scholar 

  16. Leong, T.Y., Cooper, K. & Leong, A.S. Immunohistology-past, present, and future. Adv. Anat. Pathol. 17, 404–418 (2010).

    Article  CAS  Google Scholar 

  17. Grey, A.C., Chaurand, P., Caprioli, R.M. & Schey, K.L. MALDI imaging mass spectrometry of integral membrane proteins from ocular lens and retinal tissue. J. Proteome Res. 8, 3278–3283 (2009).

    Article  CAS  Google Scholar 

  18. Yang, Y.L. et al. Connecting chemotypes and phenotypes of cultured marine microbial assemblages by imaging mass spectrometry. Angew. Chem. Int. Ed. Engl. 50, 5839–5842 (2011).

    Article  CAS  Google Scholar 

  19. Iijima, M. Visualization of lateral water transport pathways in soybean by a time of flight-secondary ion mass spectrometry cryo-system. J. Exp. Bot. 62, 2179–2188 (2011).

    Article  CAS  Google Scholar 

  20. Reyzer, M.L. & Caprioli, R.M. MALDI-MS-based imaging of small molecules and proteins in tissues. Curr. Opin. Chem. Biol. 11, 29–35 (2007).

    Article  CAS  Google Scholar 

  21. Cornett, D.S., Frappier, S.L. & Caprioli, R.M. MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal. Chem. 80, 5648–5653 (2008).

    Article  CAS  Google Scholar 

  22. Djidja, M.C. et al. Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array. Anal. Bioanal. Chem. 397, 587–601 (2010).

    Article  CAS  Google Scholar 

  23. Caprioli, R.M. Deciphering protein molecular signatures in cancer tissues to aid in diagnosis, prognosis, and therapy. Cancer Res. 65, 10642–10645 (2005).

    Article  CAS  Google Scholar 

  24. Shi, S.-R., Shi, Y. & Taylor, C.R. Antigen retrieval immunohistochemistry. J. Histochem. Cytochem. 59, 13–32 (2011).

    Article  CAS  Google Scholar 

  25. Seeley, E.H. & Caprioli, R.M. Molecular imaging of proteins in tissues by mass spectrometry. Proc. Natl. Acad. Sci. USA 105, 18126–18131 (2008).

    Article  CAS  Google Scholar 

  26. Westermark, P. & Nilsson, G.T. Demonstration of amyloid protein Aa in old museum specimens. Arch. Pathol. Lab. Med. 108, 217–219 (1984).

    CAS  PubMed  Google Scholar 

  27. Schwamborn, K. & Caprioli, R.M. MALDI imaging mass spectrometry—painting molecular pictures. Mol. Oncol. 4, 529–538 (2010).

    Article  CAS  Google Scholar 

  28. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–847 (1998).

    Article  CAS  Google Scholar 

  29. Chaurand, P. et al. Integrating histology and imaging mass spectrometry. Anal. Chem. 76, 1145–1155 (2004).

    Article  CAS  Google Scholar 

  30. Schwamborn, K. et al. Identifying prostate carcinoma by MALDI-Imaging. Int. J. Mol. Med. 20, 155–159 (2007).

    CAS  PubMed  Google Scholar 

  31. Evers, P., Uylings, H.B.M. & Suurmeijer, A.J.H. Antigen retrieval in formaldehyde-fixed human brain tissue. Methods 15, 133–140 (1998).

    Article  CAS  Google Scholar 

  32. Shi, S.R., Liu, C., Balgley, B.M., Lee, C. & Taylor, C.R. Protein extraction from formalin-fixed, paraffin-embedded tissue sections: quality evaluation by mass spectrometry. J. Histochem. Cytochem. 54, 739–743 (2006).

    Article  CAS  Google Scholar 

  33. Sato, T.A., Aoki, Y., Toyama, A. & Shimada, T. A novel method for analyzing formalin-fixed paraffin-embedded (FFPE) tissue sections by mass spectrometry imaging. Neurosci. Res. 61, S19 (2008).

    Google Scholar 

  34. Shi, S.R., Cote, R.J. & Taylor, C.R. Antigen retrieval techniques: current perspectives. J. Histochem. Cytochem. 49, 931–937 (2001).

    Article  CAS  Google Scholar 

  35. Taylor, C.R. et al. Comparative study of antigen retrieval heating methods: microwave, microwave and pressure cooker, autoclave, and steamer. Biotech. Histochem. 71, 263–270 (1996).

    Article  CAS  Google Scholar 

  36. Yamashita, S. Heat-induced antigen retrieval: Mechanisms and application to histochemistry. Prog. Histochem. Cytochem. 41, 141–200 (2007).

    Article  CAS  Google Scholar 

  37. Hoetelmans, R.W.M., van Slooten, H.J., Keijzer, R., van de Velde, C.J.H. & van Dierendonck, J.H. Comparison of the effects of microwave heating and high pressure cooking for antigen retrieval of human and rat Bcl-2 protein in formaldehyde-fixed, paraffin-embedded sections. Biotech. Histochem. 77, 137–144 (2002).

    Article  CAS  Google Scholar 

  38. Aerni, H.R., Cornett, D.S. & Caprioli, R.M. High-throughput profiling of formalin-fixed paraffin embedded tissue using parallel electrophoresis and matrix assisted laser desorption ionization mass spectrometry. Anal. Chem. 81, 7490–7495 (2009).

    Article  CAS  Google Scholar 

  39. Nirmalan, N.J., Harnden, P., Selby, P.J. & Banks, R.E. Mining the archival formalin-fixed paraffin-embedded tissue proteome: opportunities and challenges. Mol. Biosyst. 4, 712–720 (2008).

    Article  CAS  Google Scholar 

  40. Reyzer, M.L., Chaurand, P., Angel, P.M. & Caprioli, R.M. Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry. Methods Mol. Biol. 656, 285–301 (2010).

    Article  CAS  Google Scholar 

  41. Schuerenberg, M., Luebbert, C., Deininger, S.O., Ketterlinus, R. & Suckau, D. MALDI tissue imaging: mass spectrometric localization of biomarkers in tissue slices. Nat. Methods 4, iii–iv (2007).

    Article  Google Scholar 

  42. Nilsson, A. et al. Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS ONE 5, e11411 (2010).

    Article  Google Scholar 

  43. Baluya, D.L., Garrett, T.J. & Yost, R.A. Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal. Chem. 79, 6862–6867 (2007).

    Article  CAS  Google Scholar 

  44. Wisztorski, M., Franck, J., Salzet, M. & Fournier, I. MALDI direct analysis and imaging of frozen versus FFPE tissues: what strategy for which sample? Methods Mol. Biol. 656, 303–322 (2010).

    Article  CAS  Google Scholar 

  45. Aerni, H.R., Cornett, D.S. & Caprioli, R.M. Automated acoustic matrix deposition for MALDI sample preparation. Anal. Chem. 78, 827–834 (2006).

    Article  CAS  Google Scholar 

  46. Hardesty, W.M. Proteomic Analysis and Classification of Metastatic Melanoma by MALDI Imaging Mass Spectrometry. Ph.D. Dissertation, Vanderbilt University http://etd.library.vanderbilt.edu/available/etd-08252010-081820/unrestricted/Hardesty.pdf (2010).

  47. Norris, J.L. et al. Processing MALDI mass spectra to improve mass spectral direct tissue analysis. Int. J. Mass Spectrom. 260, 212–221 (2007).

    Article  CAS  Google Scholar 

  48. Mann, M., Hendrickson, R.C. & Pandey, A. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70, 437–473 (2001).

    Article  CAS  Google Scholar 

  49. Tabb, D.L., Friedman, D.B. & Ham, A.J.L. Verification of automated peptide identifications from proteomic tandem mass spectra. Nat. Protoc. 1, 2213–2222 (2006).

    Article  CAS  Google Scholar 

  50. Holle, A., Haase, A., Kayser, M. & Hohndorf, J. Optimizing UV laser focus profiles for improved MALDI performance. J. Mass Spectrom. 41, 705–716 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.M. Angel, M.L. Reyzer and E.H. Seeley for helpful discussions and critical reviewing of the manuscript. We also thank J.L. Allen, E.H. Seeley and K. Schwamborn for development and optimization of the deparaffinization and antigen retrieval methods, and M. Reid Groseclose for providing some TMA images and the figures in the Anticipated Results section. This work was supported by the US National Institutes of Health/National Institute of General Medical Sciences grants 5RO1GM058008-11 and DOD W81XWH-05-1-0179.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the development of the protocol and the writing of the manuscript.

Corresponding author

Correspondence to Richard M Caprioli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casadonte, R., Caprioli, R. Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc 6, 1695–1709 (2011). https://doi.org/10.1038/nprot.2011.388

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.388

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research