Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

3D maps of RNA interhelical junctions

Abstract

More than 50% of RNA secondary structure is estimated to be A-form helices, which are linked together by various junctions. Here we describe a protocol for computing three interhelical Euler angles describing the relative orientation of helices across RNA junctions. 5′ and 3′ helices, H1 and H2, respectively, are assigned based on the junction topology. A reference canonical helix is constructed using an appropriate molecular builder software consisting of two continuous idealized A-form helices (iH1 and iH2) with helix axis oriented along the molecular Z-direction running toward the positive direction from iH1 to iH2. The phosphate groups and the carbon and oxygen atoms of the sugars are used to superimpose helix H1 of a target interhelical junction onto the corresponding iH1 of the reference helix. A copy of iH2 is then superimposed onto the resulting H2 helix to generate iH2′. A rotation matrix R is computed, which rotates iH2′ into iH2 and expresses the rotation parameters in terms of three Euler angles αh, βh and γh. The angles are processed to resolve a twofold degeneracy and to select an overall rotation around the axis of the reference helix. The three interhelical Euler angles define clockwise rotations around the 5′ (−γh) and 3′ (αh) helices and an interhelical bend angle (βh). The angles can be depicted graphically to provide a 'Ramachandran'-type view of RNA global structure that can be used to identify unusual conformations as well as to understand variations due to changes in sequence, junction topology and other parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interhelical Euler angles.
Figure 2: General scheme for computing interhelical Euler angles.
Figure 3: Definition of Euler rotation matrix and angles.
Figure 4: Approaches for mapping interhelical Euler angles.
Figure 5: Topological confinement and distribution of RNA interhelical orientations; 3D interhelical orientation maps showing the individual 2D projections along each plane.

Similar content being viewed by others

References

  1. Hooft, R.W., Sander, C. & Vriend, G. Objectively judging the quality of a protein structure from a Ramachandran plot. Comput. Appl. Biosci. 13, 425–430 (1997).

    CAS  PubMed  Google Scholar 

  2. Bertini, I., Cavallaro, G., Luchinat, C. & Poli, I. A use of Ramachandran potentials in protein solution structure determinations. J. Biomol. NMR 26, 355–366 (2003).

    Article  CAS  Google Scholar 

  3. Gopalakrishnan, K., Sheik, S.S., Ranjani, C.V., Udayakumar, A. & Sekar, K. Conformational Angles DataBase (CADB-3.0). Prot. Pept. Lett. 14, 665–668 (2007).

    Article  CAS  Google Scholar 

  4. Wu, D., Jernigan, R. & Wu, Z. Refinement of NMR-determined protein structures with database derived mean-force potentials. Proteins 68, 232–242 (2007).

    Article  CAS  Google Scholar 

  5. Kumar, M.V. & Swaminathan, R. A novel approach to segregate and identify functional loop regions in protein structures using their Ramachandran maps. Proteins 78, 900–916 (2010).

    Article  CAS  Google Scholar 

  6. MacDonald, J.T., Maksimiak, K., Sadowski, M.I. & Taylor, W.R. De novo backbone scaffolds for protein design. Proteins 78, 1311–1325 (2010).

    Article  CAS  Google Scholar 

  7. Olson, W.K. et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 313, 229–237 (2001).

    Article  CAS  Google Scholar 

  8. Neidle, S. Oxford Handbook of Nucleic Acid Structure (Oxford University Press, 1999).

  9. Duarte, C.M. & Pyle, A.M. Stepping through an RNA structure: a novel approach to conformational analysis. J. Mol. Biol. 284, 1465–1478 (1998).

    Article  CAS  Google Scholar 

  10. Chu, V.B. et al. Do conformational biases of simple helical junctions influence RNA folding stability and specificity? RNA 15, 2195–2205 (2009).

    Article  CAS  Google Scholar 

  11. Koch, M.H., Vachette, P. & Svergun, D.I. Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q. Rev. Biophys. 36, 147–227 (2003).

    Article  CAS  Google Scholar 

  12. Patkowski, A., Eimer, W. & Dorfmüller, T. Internal dynamics of tRNA(Phe) studied by depolarized dynamic light scattering. Biopolymers 30, 975–983 (1990).

    Article  CAS  Google Scholar 

  13. Anunciado, D. et al. Characterization of the dynamics of an essential helix in the U1A protein by time-resolved fluorescence measurements. J. Phys. Chem. B. 112, 6122–6130 (2008).

    Article  CAS  Google Scholar 

  14. Cherny, D.I., Eperon, I.C. & Bagshaw, C.R. Probing complexes with single fluorophores: factors contributing to dispersion of FRET in DNA/RNA duplexes. Eur. Biophys. J. 38, 395–405 (2009).

    Article  CAS  Google Scholar 

  15. Leontis, N.B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).

    Article  CAS  Google Scholar 

  16. Bhattacharyya, A., Murchie, A. & Lilley, D.M. RNA bulges and the helical periodicity of double-stranded RNA. Nature 343, 484–487 (1990).

    Article  CAS  Google Scholar 

  17. Lilley, D.M. Folding of branched RNA species. Biopolymers 48, 101–112 (1998).

    Article  CAS  Google Scholar 

  18. Goody, T.A., Lilley, D.M. & Norman, D.G. The chirality of a four-way helical junction in RNA. J. Am. Chem. Soc. 126, 4126–4127 (2004).

    Article  CAS  Google Scholar 

  19. Musselman, C. et al. Impact of static and dynamic A-form heterogeneity on the determination of RNA global structural dynamics using NMR residual dipolar couplings. J. Biomol. NMR 36, 235–249 (2006).

    Article  CAS  Google Scholar 

  20. Gast, F.U., Amiri, K.M. & Hagerman, P.J. Interhelix geometry of stems I and II of a self-cleaving hammerhead RNA. Biochemistry 33, 1788–1796 (1994).

    Article  CAS  Google Scholar 

  21. Leehey, M.A., Squassoni, C.A., Friederich, M.W., Mills, J.B. & Hagerman, P.J. A noncanonical tertiary conformation of a human mitochondrial transfer RNA. Biochemistry 34, 16235–16239 (1995).

    Article  CAS  Google Scholar 

  22. Zacharias, M. & Hagerman, P.J. Bulge-induced bends in RNA: quantification by transient electric birefringence. J. Mol. Biol. 247, 486–500 (1995).

    Article  CAS  Google Scholar 

  23. Zacharias, M. & Hagerman, P.J. The influence of symmetric internal loops on the flexibility of RNA. J. Mol. Biol. 257, 276–289 (1996).

    Article  CAS  Google Scholar 

  24. Zacharias, M. & Hagerman, P.J. Influence of static and dynamic bends on the birefringence decay profile of RNA helices: Brownian dynamics simulations. Biophys. J. 73, 318–332 (1997).

    Article  CAS  Google Scholar 

  25. Nakamura, T.M., Wang, Y.H., Zaug, A.J., Griffith, J.D. & Cech, T.R. Relative orientation of RNA helices in a group 1 ribozyme determined by helix extension electron microscopy. EMBO J. 14, 4849 (1995).

    Article  CAS  Google Scholar 

  26. Amiri, K.M.A. & Hagerman, P.J. Global conformation of a self-cleaving hammerhead RNA. Biochemistry 33, 13172–13177 (1994).

    Article  CAS  Google Scholar 

  27. Al-Hashimi, H.M. et al. Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings. J. Mol. Biol. 315, 95–102 (2002).

    Article  CAS  Google Scholar 

  28. Zhang, Q., Sun, X., Watt, E.D. & Al-Hashimi, H.M. Resolving the motional modes that code for RNA adaptation. Science 311, 653–656 (2006).

    Article  CAS  Google Scholar 

  29. Hansen, A.L. & Al-Hashimi, H.M. Dynamics of large elongated RNA by NMR carbon relaxation. J. Am. Chem. Soc. 129, 16072–16082 (2007).

    Article  CAS  Google Scholar 

  30. Zhang, Q., Stelzer, A.C., Fisher, C.K. & Al-Hashimi, H.M. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450, 1263–1267 (2007).

    Article  CAS  Google Scholar 

  31. Getz, M.M., Andrews, A.J., Fierke, C.A. & Al-Hashimi, H.M. Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation. RNA 13, 251–266 (2007).

    Article  CAS  Google Scholar 

  32. Zhang, Q. & Al-Hashimi, H.M. Extending the NMR spatial resolution limit for RNA by motional couplings. Nat. Methods 5, 243–245 (2008).

    Article  CAS  Google Scholar 

  33. Hansen, A.L., Nikolova, E.N., Casiano-Negroni, A. & Al-Hashimi, H.M. Extending the range of microsecond-to-millisecond chemical exchange detected in labeled and unlabeled nucleic acids by selective carbon R(1rho) NMR spectroscopy. J. Am. Chem. Soc. 131, 3818–3819 (2009).

    Article  CAS  Google Scholar 

  34. Zhang, Q. & Al-Hashimi, H.M. Domain-elongation NMR spectroscopy yields new insights into RNA dynamics and adaptive recognition. RNA 15, 1941–1948 (2009).

    Article  CAS  Google Scholar 

  35. Dethoff, E.A., Hansen, A.L., Zhang, Q. & Al-Hashimi, H.M. Variable helix elongation as a tool to modulate RNA alignment and motional couplings. J. Magn. Reson. 202, 117–121 (2010).

    Article  CAS  Google Scholar 

  36. Bax, A. & Grishaev, A. Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr. Opin. Struct. Biol. 15, 563–570 (2005).

    Article  CAS  Google Scholar 

  37. Lipsitz, R.S. & Tjandra, N. Residual dipolar couplings in NMR structure analysis. Annu. Rev. Biophys. Biomol. Struct. 33, 387–413 (2004).

    Article  CAS  Google Scholar 

  38. MacDonald, D. & Lu, P. Residual dipolar couplings in nucleic acid structure determination. Curr. Opin. Struct. Biol. 12, 337–343 (2002).

    Article  CAS  Google Scholar 

  39. Casiano-Negroni, A., Sun, X. & Al-Hashimi, H.M. Probing Na(+)-induced changes in the HIV-1 TAR conformational dynamics using NMR residual dipolar couplings: new insights into the role of counterions and electrostatic interactions in adaptive recognition. Biochemistry 46, 6525–6535 (2007).

    Article  CAS  Google Scholar 

  40. Getz, M., Sun, X., Casiano-Negroni, A., Zhang, Q. & Al-Hashimi, H.M. NMR studies of RNA dynamics and structural plasticity using NMR residual dipolar couplings. Biopolymers 86, 384–402 (2007).

    Article  CAS  Google Scholar 

  41. Bailor, M.H. et al. Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings. Nat. Protoc. 2, 1536–1546 (2007).

    Article  CAS  Google Scholar 

  42. Bailor, M.H., Sun, X. & Al-Hashimi, H.M. Topology links RNA secondary structure with global conformation, dynamics, and adaptation. Science 327, 202–206 (2010).

    Article  CAS  Google Scholar 

  43. Gelbin, A. et al. Geometric parameters in nucleic acids: sugar and phosphate constituents. J. Am. Chem. Soc. 118, 519–529 (1996).

    Article  CAS  Google Scholar 

  44. Nelson, J.W., Martin, F.H. & Tinoco, I. DNA and RNA oligomer thermodynamics: the effect of mismatched bases on double-helix stability. Biopolymers 20, 2509–2531 (1981).

    Article  CAS  Google Scholar 

  45. Holbrook, S.R. & Kim, S.H. Local mobility of nucleic acids as determined from crystallographic data. I. RNA and B form DNA. J. Mol. Biol. 173, 361–388 (1984).

    Article  CAS  Google Scholar 

  46. Foloppe, N. & MacKerell, A.D. Jr. Conformational properties of the deoxyribose and ribose moieties of nucleic acids: a quantum mechanical study. J. Phys. Chem. B. 102, 6669–6678 (1998).

    Article  CAS  Google Scholar 

  47. Lilley, D.M. et al. A nomenclature of junctions and branchpoints in nucleic acids. Nucleic Acids Res. 23, 3363–3364 (1995).

    Article  CAS  Google Scholar 

  48. Yang, H. et al. Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res. 31, 3450–3460 (2003).

    Article  CAS  Google Scholar 

  49. Varshalovich, D.A., Moskalev, A.N. & Khersonskii, V.K. Quantum Theory of Angular Momentum (World Scientific Pub. Co., 1987).

  50. Tolman, J.R., Al-Hashimi, H.M., Kay, L.E. & Prestegard, J.H. Structural and dynamic analysis of residual dipolar coupling data for proteins. J. Am. Chem. Soc. 123, 1416–1424 (2001).

    Article  CAS  Google Scholar 

  51. Fisher, C.K. & Al-Hashimi, H.M. Approximate reconstruction of continuous spatially complex domain motions by multialignment NMR residual dipolar couplings. J. Phys. Chem. B. 113, 6173–6176 (2009).

    Article  CAS  Google Scholar 

  52. Bugayevskiy, L.M. & Snyder, J.P. Map Projections: A Reference Manual (Blackwell Publishers, 1996).

  53. Losonczi, J.A., Andrec, M., Fischer, M.W.F. & Prestegard, J.H. Order matrix analysis of residual dipolar couplings using singular value decomposition. J. Mag. Reson. 138, 334–342 (1999).

    Article  CAS  Google Scholar 

  54. Jossinet, F., Ludwig, T.E. & Westhof, E. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26, 2057–2059 (2010).

    Article  CAS  Google Scholar 

  55. Ravishanker, G., Swaminathan, S., Beveridge, D.L., Lavery, R. & Sklenar, H. Conformational and helicoidal analysis of 30 PS of molecular dynamics on the d (CGCGAATTCGCG) double helix: 'curves', dials and windows. J. Biomol. Struct. Dyn. 6, 669–699 (1989).

    Article  CAS  Google Scholar 

  56. Dickerson, R.E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–1926 (1998).

    Article  CAS  Google Scholar 

  57. Lu, X.J. & Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    Article  CAS  Google Scholar 

  58. Lu, X.J., El Hassan, M.A. & Hunter, C.A. Structure and conformation of helical nucleic acids: analysis program (SCHNAaP). J. Mol. Biol. 273, 668–680 (1997).

    Article  CAS  Google Scholar 

  59. Bansal, M., Bhattacharyya, D. & Ravi, B. NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures. Comput. Appl. Biosci. 11, 281–287 (1995).

    CAS  PubMed  Google Scholar 

  60. Ren, P. & Ponder, J.W. Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. J. Comput. Chem. 23, 1497–1506 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Herschlag and V. Chu of Stanford University for stimulating discussions. A.M.M. acknowledges support from a Graduate Research Fellowship from the National Science Foundation (NSF). H.M.A.-H. acknowledges support from a NSF CAREER award (MCB 0644278) and a National Institutes of Health grant (R01GM089846). C.L.B. acknowledges funding for the Center for Multi-scale Modeling Tools for Structural Biology by the National Center for Research Resources (P41RR012255).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work presented in this paper. M.H.B. and H.M.A.-H. conceived the original protocol, developed the underlying theory and performed the analysis. A.M.M. developed theory and performed analysis to define the various Euler angle conventions, improve the robustness of the protocol and establish its limits of applicability. C.L.B. performed supporting simulations to assess the robustness of the protocol. M.H.B., A.M.M., C.L.B. and H.M.A.-H. prepared the manuscript.

Corresponding author

Correspondence to Hashim M Al-Hashimi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailor, M., Mustoe, A., Brooks, C. et al. 3D maps of RNA interhelical junctions. Nat Protoc 6, 1536–1545 (2011). https://doi.org/10.1038/nprot.2011.385

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.385

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing