Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates

Abstract

Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo–N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2: Peptide relative quantification with dimethylation, SILAC or iTRAQ isotopic-labeling strategies.
Figure 3: Schematic representation of bioinformatics analysis pipeline for TAILS data.
Figure 1: Schematic representation of the TAILS workflow.
Figure 4: Schematic representation of the immobilization procedure for a single piece of Empore material on a pipette tip.

Similar content being viewed by others

References

  1. Kleifeld, O. et al. Isotopic labeling of terminal amines in complex samples identifies protein N termini and protease cleavage products. Nat. Biotechnol. 28, 281–288 (2010).

    Article  CAS  Google Scholar 

  2. Kleifeld, O., Doucet, A., Kizhakkedathu, J.N. & Overall, C.M. System-wide proteomic identification of protease cleavage products by terminal amine isotopic labeling of substrates. Protoc. Exchange published online, doi:10.1038/nprot.2010.30 (2010).

  3. Prudova, A., auf dem Keller, U., Butler, G.S. & Overall, C.M. Multiplex N terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics 9, 894–911 (2010).

    Article  CAS  Google Scholar 

  4. auf dem Keller, U., Prudova, A., Gioia, M., Butler, G.S. & Overall, C.M. A statistics-based platform for quantitative N terminome analysis and identification of protease cleavage products. Mol. Cell. Proteomics 9, 912–927 (2010).

    Article  CAS  Google Scholar 

  5. Hegde, R.S. & Bernstein, H.D. The surprising complexity of signal sequences. Trends Biochem. Sci. 31, 563–571 (2006).

    Article  CAS  Google Scholar 

  6. McQuibban, G.A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).

    Article  CAS  Google Scholar 

  7. Overall, C.M. & Lopez-Otin, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer 2, 657–672 (2002).

    Article  CAS  Google Scholar 

  8. Vergote, D. et al. Proteolytic processing of SDF-1alpha reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proc. Natl. Acad. Sci. USA 103, 19182–19187 (2006).

    Article  CAS  Google Scholar 

  9. Overall, C.M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol. 22, 51–86 (2002).

    Article  CAS  Google Scholar 

  10. Meinnel, T., Serero, A. & Giglione, C. Impact of the N-terminal amino acid on targeted protein degradation. Biol. Chem. 387, 839–851 (2006).

    Article  CAS  Google Scholar 

  11. Gevaert, K. et al. Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol. 21, 566–569 (2003).

    Article  CAS  Google Scholar 

  12. McDonald, L., Robertson, D.H., Hurst, J.L. & Beynon, R.J. Positional proteomics: selective recovery and analysis of N-terminal proteolytic peptides. Nat. Methods 2, 955–957 (2005).

    Article  CAS  Google Scholar 

  13. Kuhn, K. et al. Isolation of N-terminal protein sequence tags from cyanogen bromide cleaved proteins as a novel approach to investigate hydrophobic proteins. J. Proteome Res. 2, 598–609 (2003).

    Article  CAS  Google Scholar 

  14. McDonald, L. & Beynon, R.J. Positional proteomics: preparation of amino-terminal peptides as a strategy for proteome simplification and characterization. Nat. Protoc. 1, 1790–1798 (2006).

    Article  CAS  Google Scholar 

  15. Mahrus, S. et al. Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134, 866–876 (2008).

    Article  CAS  Google Scholar 

  16. Van Damme, P., Arnesen, T. & Gevaert, K. Protein alpha-n-acetylation studied by N-terminomics. FEBS J. published online, doi:10.1111/j.1742-4658.2011.08230.x. (7 July 2011).

  17. Overall, C.M. & Blobel, C.P. In search of partners: linking extracellular proteases to substrates. Nat. Rev. Mol. Cell Biol. 8, 245–257 (2007).

    Article  CAS  Google Scholar 

  18. Doucet, A., Butler, G.S., Rodriguez, D., Prudova, A. & Overall, C.M. Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Mol. Cell Proteomics 7, 1925–1951 (2008).

    Article  CAS  Google Scholar 

  19. Polevoda, B. & Sherman, F. Nalpha -terminal acetylation of eukaryotic proteins. J. Biol. Chem. 275, 36479–36482 (2000).

    Article  CAS  Google Scholar 

  20. Puente, X.S., Sanchez, L.M., Overall, C.M. & Lopez-Otin, C. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544–558 (2003).

    Article  CAS  Google Scholar 

  21. Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5, 785–799 (2006).

    Article  CAS  Google Scholar 

  22. Lopez-Otin, C. & Overall, C.M. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 3, 509–519 (2002).

    Article  CAS  Google Scholar 

  23. Ji, C., Guo, N. & Li, L. Differential dimethyl labeling of N termini of peptides after guanidination for proteome analysis. J. Proteome Res. 4, 2099–2108 (2005).

    Article  CAS  Google Scholar 

  24. Dormeyer, W., Mohammed, S., Breukelen, B., Krijgsveld, J. & Heck, A.J. Targeted analysis of protein termini. J. Proteome Res. 6, 4634–4645 (2007).

    Article  CAS  Google Scholar 

  25. Schilling, O. & Overall, C.M. Proteomic discovery of protease substrates. Curr. Opin. Chem. Biol. 11, 36–45 (2007).

    Article  CAS  Google Scholar 

  26. Timmer, J.C. et al. Profiling constitutive proteolytic events in vivo. Biochem. J. 407, 41–48 (2007).

    Article  CAS  Google Scholar 

  27. Enoksson, M. et al. Identification of proteolytic cleavage sites by quantitative proteomics. J. Proteome Res. 6, 2850–2858 (2007).

    Article  CAS  Google Scholar 

  28. Guo, L. et al. A proteomic approach for the identification of cell-surface proteins shed by metalloproteases. Mol. Cell Proteomics 1, 30–36 (2002).

    Article  CAS  Google Scholar 

  29. Dix, M.M., Simon, G.M. & Cravatt, B.F. Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134, 679–691 (2008).

    Article  CAS  Google Scholar 

  30. Staes, A. et al. Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics 8, 1362–1370 (2008).

    Article  CAS  Google Scholar 

  31. Van Damme, P. et al. Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis. Nat. Methods 2, 771–777 (2005).

    Article  CAS  Google Scholar 

  32. Van Damme, P. et al. Analysis of protein processing by N-terminal proteomics reveals novel species-specific substrate determinants of granzyme B orthologs. Mol. Cell. Proteomics 8, 258–272 (2008).

    Article  Google Scholar 

  33. Vande Walle, L. et al. Proteome-wide identification of HtrA2/Omi substrates. J. Proteome Res. 6, 1006–1015 (2007).

    Article  CAS  Google Scholar 

  34. Wold, F. In vivo chemical modification of proteins (post-translational modification). Annu. Rev. Biochem. 50, 783–814 (1981).

    Article  CAS  Google Scholar 

  35. Dean, R.A. & Overall, C.M. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol. Cell. Proteomics 6, 611–623 (2007).

    Article  CAS  Google Scholar 

  36. Dean, R.A. et al. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin Affin regulatory peptide (Pleiotrophin) and VEGF/connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol. Cell Biol. 27, 8454–8465 (2007).

    Article  CAS  Google Scholar 

  37. Butler, G.S., Dean, R.A., Tam, E.M. & Overall, C.M. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of matrix metalloproteinase-14 (MT1-MMP) mediated membrane protein shedding. Mol. Cell Biol. 28, 4896–4914 (2008).

    Article  CAS  Google Scholar 

  38. Hsu, J.L., Huang, S.Y., Chow, N.H. & Chen, S.H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003).

    Article  CAS  Google Scholar 

  39. Metz, B. et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J. Biol. Chem. 279, 6235–6243 (2004).

    Article  CAS  Google Scholar 

  40. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A.J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    Article  CAS  Google Scholar 

  41. Pichler, P. et al. Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal. Chem. 82, 6549–6558 (2010).

    Article  CAS  Google Scholar 

  42. Thompson, A.J. et al. Characterization of protein phosphorylation by mass spectrometry using immobilized metal ion affinity chromatography with on-resin beta-elimination and Michael addition. Anal. Chem. 75, 3232–3243 (2003).

    Article  CAS  Google Scholar 

  43. Molina, H. et al. Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J. Proteome Res. 8, 48–58 (2009).

    Article  CAS  Google Scholar 

  44. Gioia, M., Foster, L.J. & Overall, C.M. Cell-based identification of natural substrates and cleavage sites for extracellular proteases by SILAC proteomics. Methods Mol. Biol. 539, 131–153 (2009).

    Article  CAS  Google Scholar 

  45. Heinecke, N.L., Pratt, B.S., Vaisar, T. & Becker, L. PepC: proteomics software for identifying differentially expressed proteins based on spectral counting. Bioinformatics 26, 1574–1575 (2010).

    Article  CAS  Google Scholar 

  46. Lu, P., Vogel, C., Wang, R., Yao, X. & Marcotte, E.M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25, 117–124 (2007).

    Article  CAS  Google Scholar 

  47. Schilling, O. & Overall, C.M. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat. Biotechnol. 26, 685–694 (2008).

    Article  CAS  Google Scholar 

  48. Zhang, R. & Regnier, F.E. Minimizing resolution of isotopically coded peptides in comparative proteomics. J. Proteome Res. 1, 139–147 (2002).

    Article  CAS  Google Scholar 

  49. Guo, K., Ji, C. & Li, L. Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Anal. Chem. 79, 8631–8638 (2007).

    Article  CAS  Google Scholar 

  50. Higdon, R. & Kolker, E. A predictive model for identifying proteins by a single peptide match. Bioinformatics 23, 277–280 (2007).

    Article  CAS  Google Scholar 

  51. Keller, A., Eng, J., Zhang, N., Li, X.J. & Aebersold, R. A uniform proteomics MS/MS analysis platform using open XML file formats. Mol. Syst. Biol. 1, 2005.0017 (2005).

    Article  Google Scholar 

  52. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  53. Craig, R. & Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    Article  CAS  Google Scholar 

  54. Elias, J.E., Haas, W., Faherty, B.K. & Gygi, S.P. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat. Methods 2, 667–675 (2005).

    Article  CAS  Google Scholar 

  55. Searle, B.C., Turner, M. & Nesvizhskii, A.I. Improving sensitivity by probabilistically combining results from multiple MS/MS search methodologies. J. Proteome Res. 7, 245–253 (2008).

    Article  CAS  Google Scholar 

  56. Shteynberg, D. et al. iProphet: Multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell. Proteomics. published online, doi:10.1074/mcp.M111.007690 (2011).

  57. Elias, J.E. & Gygi, S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  Google Scholar 

  58. Choi, H. & Nesvizhskii, A.I. Semisupervised model-based validation of peptide identifications in mass spectrometry-based proteomics. J. Proteome Res. 7, 254–265 (2008).

    Article  CAS  Google Scholar 

  59. Oliveros, J.C. VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html (2007).

  60. Butler, G.S. & Overall, C.M. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat. Rev. Drug Discov. 8, 935–948 (2009).

    Article  CAS  Google Scholar 

  61. Butler, G.S. & Overall, C.M. Updated biological roles for matrix metalloproteinases and new 'intracellular' substrates revealed by degradomics. Biochemistry 48, 10830–10845 (2009).

    Article  CAS  Google Scholar 

  62. Lange, P.F. & Overall, C.M. TopFIND, a knowledgebase linking protein termini with function. Nat. Meth. 8, 703–704 (2011).

    Article  CAS  Google Scholar 

  63. Chevallet, M., Luche, S. & Rabilloud, T. Silver staining of proteins in polyacrylamide gels. Nat. Protoc. 1, 1852–1858 (2006).

    Article  CAS  Google Scholar 

  64. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  Google Scholar 

  65. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  Google Scholar 

  66. Boja, E.S. & Fales, H.M. Overalkylation of a protein digest with iodoacetamide. Anal. Chem. 73, 3576–3582 (2001).

    Article  CAS  Google Scholar 

  67. Nielsen, M.L. et al. Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat. Methods 5, 459–460 (2008).

    Article  CAS  Google Scholar 

  68. Gidley, M.J. & Sanders, J.K. Reductive methylation of proteins with sodium cyanoborohydride. Identification, suppression and possible uses of N-cyanomethyl by-products. Biochem. J. 203, 331–334 (1982).

    Article  CAS  Google Scholar 

  69. Jentoft, N. & Dearborn, D.G. Labeling of proteins by reductive methylation using sodium cyanoborohydride. J. Biol. Chem. 254, 4359–4365 (1979).

    CAS  PubMed  Google Scholar 

  70. Hwang, S.I. et al. Direct cancer tissue proteomics: a method to identify candidate cancer biomarkers from formalin-fixed paraffin-embedded archival tissues. Oncogene 26, 65–76 (2007).

    Article  CAS  Google Scholar 

  71. Fu, Q. & Li, L. De novo sequencing of neuropeptides using reductive isotopic methylation and investigation of ESI QTOF MS/MS fragmentation pattern of neuropeptides with N-terminal dimethylation. Anal. Chem. 77, 7783–7795 (2005).

    Article  CAS  Google Scholar 

  72. Ding, Y., Choi, H. & Nesvizhskii, A.I. Adaptive discriminant function analysis and reranking of MS/MS database search results for improved peptide identification in shotgun proteomics. J. Proteome Res. 7, 4878–4889 (2008).

    Article  CAS  Google Scholar 

  73. Wessa, P. Free Statistics Software, Office for Research Development and Education, version 1.1.23-r6, http://www.wessa.net/ (2010).

  74. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  Google Scholar 

  75. Ong, S.E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1, 2650–2660 (2006).

    Article  CAS  Google Scholar 

  76. Ishihama, Y., Rappsilber, J. & Mann, M. Modular stop and go extraction tips with stacked disks for parallel and multidimensional Peptide fractionation in proteomics. J. Proteome Res. 5, 988–994 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

O.K. developed dimethylation-TAILS and drafted the manuscript. A.D. participated in the development and optimization of dimethylation-TAILS and participated in the manuscript writing. A.P. developed iTRAQ-TAILS and revised the manuscript. U.a.d.K. participated in the development of analysis tools of iTRAQ-TAILS, wrote TAILS-ANNOTATOR and revised the manuscript. M.G. developed SILAC-TAILS and revised the manuscript. J.N.K. engineered the HPG-ALD polymer series and participated in methods development and manuscript writing. C.M.O. conceived the TAILS concept, projects and design, and was responsible for project supervision, data interpretation, manuscript writing and providing grant support.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleifeld, O., Doucet, A., Prudova, A. et al. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 6, 1578–1611 (2011). https://doi.org/10.1038/nprot.2011.382

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.382

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing