Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Confocal laser endomicroscopy and narrow-band imaging-aided endoscopy for in vivo imaging of colitis and colon cancer in mice

Abstract

New endoscopic techniques such as narrow-band imaging (NBI) and confocal laser endomicroscopy (CLE) have improved the in vivo diagnosis of human gastrointestinal diseases in the colon. Whereas NBI may facilitate the identification of neoplastic lesions, CLE permits real-time histology of the inflamed or neoplastic colonic mucosa through the use of fluorescent dyes. These techniques have been recently adopted for use during ongoing endoscopy in mice. This protocol, which can be completed in 2 h, provides a detailed description of NBI and CLE in the mouse colon. In contrast to other techniques, this approach does not require laparotomy, and it allows direct CLE analysis of lesions identified by NBI. Mice exposed to models of colitis or colorectal cancer are anesthetized and examined with a miniaturized NBI endoscope, which provides an increased contrast of the vasculature. Upon identification of suspicious areas by NBI and the administration of fluorescent dyes, a confocal laser probe can be directed to the area of interest through the endoscope and confocal images can be obtained. Through the use of various fluorescent dyes, different aspects of the mucosa can be assessed. In addition, fluorescence-labeled antibodies can be used for molecular imaging of mice in vivo. Mouse NBI endoscopy and CLE represent reliable and fast high-quality techniques for the endoscopic characterization and molecular imaging of the mucosa in colitis and colon cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Narrow-band imaging (NBI) endoscopy and system setup.
Figure 2: NBI endoscopy in mouse models of inflammation and tumor development.
Figure 3: Confocal endomicroscopy in living mice.
Figure 4: CLE for the evaluation of altered vessel morphology during angiogenesis.

Similar content being viewed by others

References

  1. Taketo, M.M. Mouse models of gastrointestinal tumors. Cancer Sci. 97, 355–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Taketo, M.M. & Edelmann, W. Mouse models of colon cancer. Gastroenterology 136, 780–798 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Wirtz, S. & Neurath, M.F. Mouse models of inflammatory bowel disease. Adv. Drug Deliv. Rev. 59, 1073–1083 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Becker, C., Fantini, M.C. & Neurath, M.F. High resolution colonoscopy in live mice. Nat. Protoc. 1, 2900–2904 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Becker, C. et al. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut 54, 950–954 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goetz, M. & Neurath, M.F. Imaging techniques in inflammatory bowel disease: recent trends, questions and answers. Gastroenterol. Clin. Biol. 33 (Suppl 3): S174–S182 (2009).

    Article  PubMed  Google Scholar 

  7. Kiesslich, R., Goetz, M., Vieth, M., Galle, P.R. & Neurath, M.F. Technology insight: confocal laser endoscopy for in vivo diagnosis of colorectal cancer. Nat. Clin. Pract. Oncol. 4, 480–490 (2007).

    Article  PubMed  Google Scholar 

  8. Kiesslich, R. Chromoendoscopy: what is its true value for ulcerative colitis surveillance? Dig. Dis. 28, 445–451 (2010).

    Article  PubMed  Google Scholar 

  9. Wallace, M.B. & Kiesslich, R. Advances in endoscopic imaging of colorectal neoplasia. Gastroenterology 138, 2140–2150 (2010).

    Article  PubMed  Google Scholar 

  10. Kiesslich, R. & Neurath, M.F. Magnifying chromoendoscopy: effective diagnostic tool for screening colonoscopy. J. Gastroenterol. Hepatol. 22, 1700–1701 (2007).

    Article  PubMed  Google Scholar 

  11. Muto, M., Horimatsu, T., Ezoe, Y., Morita, S. & Miyamoto, S. Improving visualization techniques by narrow band imaging and magnification endoscopy. J. Gastroenterol. Hepatol. 24, 1333–1346 (2009).

    Article  PubMed  Google Scholar 

  12. Neumann, H., Kiesslich, R., Wallace, M.B. & Neurath, M.F. Confocal laser endomicroscopy: technical advances and clinical applications. Gastroenterology 139, 388–392, 392.e381–382 (2010).

    Article  PubMed  Google Scholar 

  13. Goetz, M. & Kiesslich, R. Advanced imaging of the gastrointestinal tract: research versus clinical tools? Curr. Opin. Gastroenterol. 25, 412–421 (2009).

    Article  PubMed  Google Scholar 

  14. Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127, 706–713 (2004).

    Article  PubMed  Google Scholar 

  15. Kiesslich, R. et al. Diagnosing Helicobacter pylori in vivo by confocal laser endoscopy. Gastroenterology 128, 2119–2123 (2005).

    Article  PubMed  Google Scholar 

  16. Moussata, D. et al. Confocal laser endomicroscopy is a new imaging modality for recognition of intramucosal bacteria in inflammatory bowel disease in vivo. Gut 60, 26–33 (2011).

    Article  PubMed  Google Scholar 

  17. Waldner, M.J. et al. VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer. J. Exp. Med. 207, 2855–2868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Larghi, A., Lecca, P.G. & Costamagna, G. High-resolution narrow band imaging endoscopy. Gut 57, 976–986 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Foersch, S. et al. Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy. Gut 59, 1046–1055 (2010).

    Article  PubMed  Google Scholar 

  20. Goetz, M. et al. In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor. Gastroenterology 138, 435–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Neurath, M.F. & Kiesslich, R. Molecular detection of CD44v6 on aberrant crypt foci by confocal laser endoscopy. Endoscopy 42 (Suppl 2): E314–E315 (2010).

    Article  PubMed  Google Scholar 

  22. Kim, P. et al. In vivo wide-area cellular imaging by side-view endomicroscopy. Nat. Methods 7, 303–305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jain, R.K., Munn, L.L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer 2, 266–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Scaldaferri, F. et al. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 136, 585–595.e5 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Massberg, S. et al. Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood 94, 3829–3838 (1999).

    CAS  PubMed  Google Scholar 

  26. Neufert, C., Becker, C. & Neurath, M.F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat. Protoc. 2, 1998–2004 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Wirtz, S., Neufert, C., Weigmann, B. & Neurath, M.F. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541–546 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Strober, W., Fuss, I.J. & Blumberg, R.S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 20, 495–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Alencar, H., Mahmood, U., Kawano, Y., Hirata, T. & Weissleder, R. Novel multiwavelength microscopic scanner for mouse imaging. Neoplasia 7, 977–983 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Riol-Blanco, L. et al. Immunological synapse formation inhibits, via NF-kappaB and FOXO1, the apoptosis of dendritic cells. Nat. Immunol. 10, 753–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Massberg, S., Eisenmenger, S., Enders, G., Krombach, F. & Messmer, K. Quantitative analysis of small intestinal microcirculation in the mouse. Res. Exp. Med. (Berl) 198, 23–35 (1998).

    Article  CAS  Google Scholar 

  32. Gompels, L.L. et al. In vivo fluorescence imaging of E-selectin: quantitative detection of endothelial activation in a mouse model of arthritis. Arthritis Rheum. 63, 107–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Beer, A. & Schwaiger, M. Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev. 27, 631–644 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Eisenblatter, M., Holtke, C., Persigehl, T. & Bremer, C. Optical techniques for the molecular imaging of angiogenesis. Eur. J. Nucl. Med. Mol. Imaging 37 (Suppl 1): S127–S137 (2010).

    Article  PubMed  Google Scholar 

  35. Wang, K. et al. In vivo imaging of tumor apoptosis using histone H1-targeting peptide. J. Controlled Release 148, 283–291 (2010).

    Article  CAS  Google Scholar 

  36. Baish, J.W. & Jain, R.K. Cancer, angiogenesis and fractals. Nat. Med. 4, 984 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Baish, J.W. & Jain, R.K. Fractals and cancer. Cancer Res. 60, 3683–3688 (2000).

    CAS  PubMed  Google Scholar 

  38. Neurath, M.F. & Kiesslich, R. Is chromoendoscopy the new standard for cancer surveillance in patients with ulcerative colitis? Nat. Clin. Pract. Gastroenterol. Hepatol. 6, 134–135 (2009).

    Article  PubMed  Google Scholar 

  39. Danese, S. et al. Narrow-band imaging endoscopy to assess mucosal angiogenesis in inflammatory bowel disease: a pilot study. World J. Gastroenterol. 16, 2396–2400 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Emura, F., Saito, Y. & Ikematsu, H. Narrow-band imaging optical chromocolonoscopy: advantages and limitations. World J. Gastroenterol. 14, 4867–4872 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rogart, J.N. et al. Narrow-band imaging without high magnification to differentiate polyps during real-time colonoscopy: improvement with experience. Gastrointest. Endosc. 68, 1136–1145 (2008).

    Article  PubMed  Google Scholar 

  42. Yoshida, N. et al. Efficacy of magnifying endoscopy with flexible spectral imaging color enhancement in the diagnosis of colorectal tumors. J. Gastroenterol. 46, 65–72 (2011).

    Article  PubMed  Google Scholar 

  43. Hoffman, A. et al. High definition colonoscopy combined with i-Scan is superior in the detection of colorectal neoplasias compared with standard video colonoscopy: a prospective randomized controlled trial. Endoscopy 42, 827–833 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.F.N. and M.J.W. were supported by the Deutsche Forschungsgemeinschaft (DFG) within the Graduiertenkolleg 1043; M.F.N., S.W. and C.B. were supported by the DFG within the FOR527. M.F.N. received funding from the European Community's seventh Framework Programme (FP7/2007-2013) under grant agreement no. 202230, acronym GENINCA. M.F.N. was supported by the United European Gastroenterology Foundation Research Prize.

Author information

Authors and Affiliations

Authors

Contributions

M.J.W., S.W., C.N. and C.B. conducted experiments. M.J.W. and M.F.N. analyzed the data and wrote the paper. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Markus F Neurath.

Ethics declarations

Competing interests

M.F.N. provides expert scientific advice to Pentax. The other authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldner, M., Wirtz, S., Neufert, C. et al. Confocal laser endomicroscopy and narrow-band imaging-aided endoscopy for in vivo imaging of colitis and colon cancer in mice. Nat Protoc 6, 1471–1481 (2011). https://doi.org/10.1038/nprot.2011.377

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.377

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing