Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging

Abstract

Characterizing biological mechanisms dependent upon the interaction of many cell types in vivo requires both multiphoton microscope systems capable of expanding the number and types of fluorophores that can be imaged simultaneously while removing the wavelength and tunability restrictions of existing systems, and enhanced software for extracting critical cellular parameters from voluminous 4D data sets. We present a procedure for constructing a two-laser multiphoton microscope that extends the wavelength range of excitation light, expands the number of simultaneously usable fluorophores and markedly increases signal to noise via 'over-clocking' of detection. We also utilize a custom-written software plug-in that simplifies the quantitative tracking and analysis of 4D intravital image data. We begin by describing the optics, hardware, electronics and software required, and finally the use of the plug-in for analysis. We demonstrate the use of the setup and plug-in by presenting data collected via intravital imaging of a mouse model of breast cancer. The procedure may be completed in 24 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical layout of custom-built TLMPM.
Figure 2: Laser wavelengths and spectra of commonly used combinations of fluorescent proteins with the TLMPM.
Figure 3: Optical layout detail of multiphoton functional unit A—Tsunami beam path.
Figure 4: Optical layout detail of multiphoton functional unit B—Mai Tai–Mai Tai pump beam path.
Figure 5: Optical layout detail of multiphoton functional unit C—Mai Tai–Opal beam path.
Figure 6: Optical layout detail of multiphoton functional unit D—combining optics and scanning optics.
Figure 7: Optical layout detail of multiphoton functional unit E—microscope and detector box.
Figure 8: Effect of GVD compensator.
Figure 9: Electronic schematic of blanking circuit.
Figure 10: Electronic schematic of two-laser multiphoton microscope.
Figure 11: Internal connections for generating timing signals and clocking acquisition.
Figure 12: Over-clocked acquisition of PMT signals.
Figure 13: The ROI tracker user interface.
Figure 14: An in vitro demonstration of color subtraction technique.
Figure 15: In vivo images of exogenously grown tumor in immunodeficient mouse.
Figure 16: Comparison between traditional and over-clocked acquisition.
Figure 17: Use of the two-laser multiphoton microscope to study dissemination.
Figure 18: ROI _Tracker analysis.
Figure 19: ROI _Tracker analysis.
Figure 20: Tracking ability in ROI_Tracker Software.

Similar content being viewed by others

References

  1. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    Article  CAS  Google Scholar 

  2. Hickman, H.D., Bennink, J.R. & Yewdell, J.W. Caught in the act: intravital multiphoton microscopy of host-pathogen interactions. Cell Host Microbe 5, 13–21 (2009).

    Article  CAS  Google Scholar 

  3. Bousso, P., Bhakta, N.R., Lewis, R.S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    Article  CAS  Google Scholar 

  4. Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  Google Scholar 

  5. Sahai, E. et al. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol. 5, 14 (2005).

    Article  Google Scholar 

  6. Ducros, M. et al. Spectral unmixing: analysis of performance in the olfactory bulb in vivo. PLoS One 4, e4418 (2009).

    Article  Google Scholar 

  7. Kawano, H., Kogure, T., Abe, Y., Mizuno, H. & Miyawaki, A. Two-photon dual-color imaging using fluorescent proteins. Nat. Methods 5, 373–374 (2008).

    Article  CAS  Google Scholar 

  8. Tillo, S.E., Hughes, T.E., Makarov, N.S., Rebane, A. & Drobizhev, M. A new approach to dual-color two-photon microscopy with fluorescent proteins. BMC Biotechnol. 10, 6 (2010).

    Article  Google Scholar 

  9. Piatkevich, K.D. & Verkhusha, V.V. Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Curr. Opin. Chem. Biol. 14, 23–29 (2010).

    Article  CAS  Google Scholar 

  10. Drobizhev, M., Tillo, S., Makarov, N.S., Hughes, T.E. & Rebane, A. Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins. J. Phys. Chem. B 113, 855–859 (2009).

    Article  CAS  Google Scholar 

  11. Shcherbo, D. et al. Bright far-red fluorescent protein for whole-body imaging. Nat. Methods 4, 741–746 (2007).

    Article  CAS  Google Scholar 

  12. Morozova, K.S. et al. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J. 99, L13–L15 (2010).

    Article  CAS  Google Scholar 

  13. Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol. 20, 54–62 (2009).

    Article  CAS  Google Scholar 

  14. Herz, J. et al. Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator. Biophys. J. 98, 715–723 (2010).

    Article  CAS  Google Scholar 

  15. Klauschen, F. et al. Quantifying cellular interaction dynamics in 3D fluorescence microscopy data. Nat. Protoc. 4, 1305–1311 (2009).

    Article  CAS  Google Scholar 

  16. Klauschen, F., Qi, H., Egen, J.G., Germain, R.N. & Meier-Schellersheim, M. Computational reconstruction of cell and tissue surfaces for modeling and data analysis. Nat. Protoc. 4, 1006–1012 (2009).

    Article  CAS  Google Scholar 

  17. Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  Google Scholar 

  18. Fork, R.L., Martinez, O.E. & Gordon, J.P. Negative dispersion using pairs of prisms. Opt. Lett. 9, 150–152 (1984).

    Article  CAS  Google Scholar 

  19. Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).

    Article  CAS  Google Scholar 

  20. Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods 5, 1019–1021 (2008).

    Article  CAS  Google Scholar 

  21. Dovas, A. et al. Visualisation of actin polymerization in invasive structures of macrophages and carcinoma cells using photoconvertible Beta-actin—Dendra2 fusion proteins. PloS One 6, e16485 (2011)doi:10.1371/journal.pone.0016485.

    Article  CAS  Google Scholar 

  22. Wyckoff, J., Gligorijevic, B., Entenberg, D., Segall, J. & Condeelis, J. in Live Cell Imaging: A Laboratory Manual 2nd edn. (eds. Swedlow, J., Goldman, R. & Spector, D.) 409–422 (Cold Spring Harbor Press, 2009).

  23. Gligorijevic, B. & Condeelis, J. Stretching the timescale of intravital imaging in tumors. Cell Adh. Migr. 3, 313–315 (2009).

    Article  Google Scholar 

  24. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  25. Soeller, C. & Cannell, M.B. Construction of a two-photon microscope and optimisation of illumination pulse duration. Pflugers Arch. 432, 555–561 (1996).

    Article  CAS  Google Scholar 

  26. Konig, K., Simon, U. & Halbhuber, K.J. 3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope. Cell Mol. Biol. (Noisy-le-grand) 42, 1181–1194 (1996).

    CAS  Google Scholar 

  27. Fan, G.Y. et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J. 76, 2412–2420 (1999).

    Article  CAS  Google Scholar 

  28. Campagnola, P.J., Wei, M.D., Lewis, A. & Loew, L.M. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77, 3341–3349 (1999).

    Article  CAS  Google Scholar 

  29. Majewska, A., Yiu, G. & Yuste, R. A custom-made two-photon microscope and deconvolution system. Pflugers. Arch. 441, 398–408 (2000).

    Article  CAS  Google Scholar 

  30. Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 7, 864–868 (2001).

    Article  CAS  Google Scholar 

  31. Diaspro, A. et al. Two-photon microscopy and spectroscopy based on a compact confocal scanning head. J. Biomed. Opt. 6, 300–310 (2001).

    Article  CAS  Google Scholar 

  32. Wokosin, D.L., Squirrell, J.M., Eliceiri, K.W. & White, J.G. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Rev. Sci. Instrum. 74, 193–201 (2003).

    Article  CAS  Google Scholar 

  33. Bird, D.K., Eliceiri, K.W., Fan, C.H. & White, J.G. Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl. Opt. 43, 5173–5182 (2004).

    Article  Google Scholar 

  34. Roorda, R.D., Hohl, T.M., Toledo-Crow, R. & Miesenbock, G. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J. Neurophysiol. 92, 609–621 (2004).

    Article  Google Scholar 

  35. Vicidomini, G. et al. Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy. J. Microsc. 225, 88–95 (2007).

    Article  CAS  Google Scholar 

  36. He, W., Wang, H., Hartmann, L.C., Cheng, J.X. & Low, P.S. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl. Acad. Sci. USA 104, 11760–11765 (2007).

    Article  CAS  Google Scholar 

  37. Han, X., Burke, R.M., Zettel, M.L., Tang, P. & Brown, E.B. Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma. Opt. Express 16, 1846–1859 (2008).

    Article  CAS  Google Scholar 

  38. Masters, B.R., So, P.T. & Gratton, E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72, 2405–2412 (1997).

    Article  CAS  Google Scholar 

  39. Tan, Y.P., Llano, I., Hopt, A., Wurriehausen, F. & Neher, E. Fast scanning and efficient photodetection in a simple two-photon microscope. J. Neurosci. Methods 92, 123–135 (1999).

    Article  CAS  Google Scholar 

  40. Piston, D.W. & Knobel, S.M. Quantitative imaging of metabolism by two-photon excitation microscopy. Methods Enzymol. 307, 351–368 (1999).

    Article  CAS  Google Scholar 

  41. Mainen, Z.F. et al. Two-photon imaging in living brain slices. Methods 18, 231–239, 181 (1999).

    Article  CAS  Google Scholar 

  42. Nguyen, Q.T., Callamaras, N., Hsieh, C. & Parker, I. Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium 30, 383–393 (2001).

    Article  CAS  Google Scholar 

  43. Tsai, P.S. et al. in In Vivo Optical Imaging of Brain Function (ed. Frostig, R.D.) 113–171 (CRC Press, 2002).

  44. Zoumi, A., Yeh, A. & Tromberg, B.J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).

    Article  CAS  Google Scholar 

  45. Supatto, W. et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl. Acad. Sci. USA 102, 1047–1052 (2005).

    Article  CAS  Google Scholar 

  46. Alencar, H., Mahmood, U., Kawano, Y., Hirata, T. & Weissleder, R. Novel multiwavelength microscopic scanner for mouse imaging. Neoplasia 7, 977–983 (2005).

    Article  Google Scholar 

  47. Zinselmeyer, B.H., Lynch, J.N., Zhang, X., Aoshi, T. & Miller, M.J. Video-rate two-photon imaging of mouse footpad—a promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm. Res. 57, 93–96 (2008).

    Article  CAS  Google Scholar 

  48. Zipfel, W.R., Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  Google Scholar 

  49. Shcherbo, D. et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567–574 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to J.C. from the US National Institutes of Health (NCI100324), the National Cancer Institute's Tumor Microenvironment Network, the Gruss Lipper Biophotonics Center and Mouse Models of Human Cancers Consortium; and grants to V.V.V. from the US National Institutes of Health (GM073913). B.G. was supported by a Charles H. Revson fellowship. We thank M. Metz, member of the Gruss Lipper Biophotonics Center, for his help with design and development. We also thank the members of the V.V.V. lab for useful discussions and M. Roh-Johnson for preparing the in vitro cell cultures.

Author information

Authors and Affiliations

Authors

Contributions

D.E., J.W. and J.C. designed the microscope and plug-in. D.E. built the microscope and wrote the plug-in. B.G. transfected proteins into cells and grew the mouse tumors. E.T.R. provided the ROI_Tracker analysis data. V.V.V. developed the TagRFP657 protein and its stably expressing MTLn3 tumor cell line. J.W.P., J.W. and J.C. developed the transgenic Dendra2 mouse model. D.E., J.W., B.G. and J.C. wrote the paper. J.C. defined the microscope performance characteristics required to address the biological application, and overall design was done by D.E. and J.C.

Corresponding author

Correspondence to John Condeelis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

3D Cad of Multiphoton Setup (PDF 18261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entenberg, D., Wyckoff, J., Gligorijevic, B. et al. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nat Protoc 6, 1500–1520 (2011). https://doi.org/10.1038/nprot.2011.376

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.376

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing