Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-molecule recognition force spectroscopy of transmembrane transporters on living cells

Abstract

Atomic force microscopy (AFM) has proven to be a powerful tool in biological sciences. Its particular advantage over other high-resolution methods commonly used is that biomolecules can be investigated not only under physiological conditions but also while they perform their biological functions. Single-molecule force spectroscopy with AFM tip-modification techniques can provide insight into intermolecular forces between individual ligand-receptor pairs of biological systems. Here we present protocols for force spectroscopy of living cells, including cell sample preparation, tip chemistry, step-by-step AFM imaging, force spectroscopy and data analysis. We also delineate critical steps and describe limitations that we have experienced. The entire protocol can be completed in 12 h. The model studies discussed here demonstrate the power of AFM for studying transmembrane transporters at the single-molecule level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFM force-distance cycle.
Figure 2: Linkage of ligands to AFM tips.
Figure 3: Positioning of AFM tip.
Figure 4: Cell images of living G6D3 cells.
Figure 5: AFM images of fixed G6D3 cells.
Figure 6: Recognition of SGLT1 on the surface of intact cells by AFM tip coated with specific antibodies (PAN3-2 antibodies).
Figure 7: Recognition of SGLT1 by a 1-thio-D-glucose-coated AFM tip.

Similar content being viewed by others

References

  1. Tyagi, N.K. et al. A biophysical glance at the outer surface of the membrane transporter SGLT1. Biochim. Biophys. Acta 1808, 1–18 (2010).

    PubMed  Google Scholar 

  2. Israelachvili, J.N. Intermolecular and Surface Forces (Academic Press, 1991).

  3. Evans, E., Ritchie, K. & Merkel, R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68, 2580–2587 (1995).

    Article  CAS  Google Scholar 

  4. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  5. Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano Today 1, 18–27 (2006).

    Article  Google Scholar 

  6. Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat. Meth. 2, 515–520 (2005).

    Article  CAS  Google Scholar 

  7. Handa, H., Gurczynski, S., Jackson, M.P. & Mao, G. Immobilization and molecular interactions between bacteriophage and lipopolysaccharide bilayers. Langmuir 26, 12095–12103 (2010).

    Article  CAS  Google Scholar 

  8. Heinisch, J.J., Dupres, V., Alsteens, D. & Dufrene, Y.F. Measurement of the mechanical behavior of yeast membrane sensors using single-molecule atomic force microscopy. Nat. Protoc. 5, 670–677 (2010).

    Article  CAS  Google Scholar 

  9. Parot, P. et al. Past, present and future of atomic force microscopy in life sciences and medicine. J. Mol. Recognit. 20, 418–431 (2007).

    Article  CAS  Google Scholar 

  10. Ebner, A. et al. Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy (Springer-Verlag, 2008).

  11. Kamruzzahan, A.S. et al. Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconjug. Chem. 17, 1473–1481 (2006).

    Article  CAS  Google Scholar 

  12. Verbelen, C., Gruber, H.J. & Dufrene, Y.F. The NTA-His6 bond is strong enough for AFM single-molecular recognition studies. J. Mol. Recognit. 20, 490–494 (2007).

    Article  CAS  Google Scholar 

  13. Harder, A., Walhorn, V., Dierks, T., Fernàndez-Busquets, X. & Anselmetti, D. Single-molecule force spectroscopy of cartilage aggrecan self-adhesion. Biophys. J. 99, 3498–3504 (2010).

    Article  CAS  Google Scholar 

  14. Wright, E.M. Renal Na(+)-glucose cotransporters. Am. J. Physiol. Renal. Physiol. 280, F10–F18 (2001).

    Article  CAS  Google Scholar 

  15. Puntheeranurak, T., Kasch, M., Xia, X., Hinterdorfer, P. & Kinne, R.K. Three surface subdomains form the vestibule of the Na+/glucose cotransporter SGLT1. J. Biol. Chem. 282, 25222–25230 (2007).

    Article  CAS  Google Scholar 

  16. Puntheeranurak, T., Kinne, R.K.H., Gruber, H.J. & Hinterdorfer, P. Single-molecule AFM studies of substrate transport by using the sodium-glucose cotransporter SGLT1. J. Korean Phys. Soc. 52, 1336–1340 (2008).

    Article  CAS  Google Scholar 

  17. Puntheeranurak, T., Wildling, L., Gruber, H.J., Kinne, R.K. & Hinterdorfer, P. Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. J. Cell Sci. 119, 2960–2967 (2006).

    Article  CAS  Google Scholar 

  18. Puntheeranurak, T. et al. Substrate specificity of sugar transport by rabbit SGLT1: single-molecule atomic force microscopy versus transport studies. Biochemistry 46, 2797–2804 (2007).

    Article  CAS  Google Scholar 

  19. Friedbacher, G. & Fuchs, H. Klassifikation der rastersondenmikroskopischen verfahren. Angew. Chem. 115, 5804–5820 (2003).

    Article  Google Scholar 

  20. Hinterdorfer, P. & Dufrene, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Meth. 3, 347–355 (2006).

    Article  CAS  Google Scholar 

  21. Chtcheglova, L.A. et al. Localization of the ergtoxin-1 receptors on the voltage sensing domain of hERG K(+) channel by AFM recognition imaging. Pflugers Arch. 456, 247–254 (2008).

    Article  CAS  Google Scholar 

  22. Chtcheglova, L.A., Waschke, J., Wildling, L., Drenckhahn, D. & Hinterdorfer, P. Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys. J. 93, L11–L13 (2007).

    Article  CAS  Google Scholar 

  23. Sotres, J. et al. Unbinding molecular recognition force maps of localized single receptor molecules by atomic force microscopy. Chemphyschem. 9, 590–599 (2008).

    Article  CAS  Google Scholar 

  24. Ebner, A. et al. A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjug. Chem. 18, 1176–1184 (2007).

    Article  CAS  Google Scholar 

  25. Eskandari, S., Wright, E.M., Kreman, M., Starace, D.M. & Zampighi, G.A. Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. Proc. Natl. Acad. Sci. USA 95, 11235–11240 (1998).

    Article  CAS  Google Scholar 

  26. Madl, J. et al. A combined optical and atomic force microscope for live cell investigations. Ultramicroscopy 106, 645–651 (2006).

    Article  CAS  Google Scholar 

  27. Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477–3481 (1996).

    Article  CAS  Google Scholar 

  28. Sanders, S.K., Alexander, E.L. & Braylan, R.C. A high-yield technique for preparing cells fixed in suspension for scanning electron microscopy. J. Cell Biol. 67, 476–480 (1975).

    Article  CAS  Google Scholar 

  29. Kipp, H., Khoursandi, S., Scharlau, D. & Kinne, R.K. More than apical: distribution of SGLT1 in Caco-2 cells. Am. J. Physiol. Cell Physiol. 285, C737–C749 (2003).

    Article  CAS  Google Scholar 

  30. Lin, J., Kormanec, J., Homerova, D. & Kinne, R.K. Probing transmembrane topology of the high-affinity Sodium/Glucose cotransporter (SGLT1) with histidine-tagged mutants. J. Membr. Biol. 170, 243–252 (1999).

    Article  CAS  Google Scholar 

  31. Lin, J.T., Kormanec, J., Wehner, F., Wielert-Badt, S. & Kinne, R.K. High-level expression of Na+/D-glucose cotransporter (SGLT1) in a stably transfected Chinese hamster ovary cell line. Biochim. Biophys. Acta 1373, 309–320 (1998).

    Article  CAS  Google Scholar 

  32. Kirmizis, D. & Logothetidis, S. Atomic force microscopy probing in the measurement of cell mechanics. Int. J. Nanomedicine 5, 137–145 (2010).

    Article  Google Scholar 

  33. Butt, H.-J. & Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7 (1995).

    Article  Google Scholar 

  34. Hutter, J.L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

  35. Sader, J.E., Pacifico, J., Green, C.P. & Mulvaney, P. General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope. J. Appl. Phys. 97, 124903–124907 (2005).

    Article  Google Scholar 

  36. Wielert-Badt, S. et al. Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy. Biophys. J. 82, 2767–2774 (2002).

    Article  CAS  Google Scholar 

  37. Pfister, G. et al. Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J. Cell Sci. 118, 1587–1594 (2005).

    Article  CAS  Google Scholar 

  38. Wildling, L., Hinterdorfer, P., Kusche-Vihrog, K., Treffner, Y. & Oberleithner, H. Aldosterone receptor sites on plasma membrane of human vascular endothelium detected by a mechanical nanosensor. Pflugers Arch. Eur. J. Physiol. 458, 223–230 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by the Austrian Science Foundation, the Max Planck Institute and the Faculty of Science, Mahidol University. We also thank the National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network. We thank L. Wildling and H. J. Gruber for their expertise in tip chemistry. Help from C. Rankl and all collaborators in Dortmund is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

T.P. designed and conducted the experiments, analyzed data and wrote the manuscript; I.N. commented on the manuscript; R.K.H.K. and P.H. designed, discussed and edited the manuscript.

Corresponding author

Correspondence to Peter Hinterdorfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puntheeranurak, T., Neundlinger, I., Kinne, R. et al. Single-molecule recognition force spectroscopy of transmembrane transporters on living cells. Nat Protoc 6, 1443–1452 (2011). https://doi.org/10.1038/nprot.2011.370

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.370

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing