Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Derivation of genetically modified human pluripotent stem cells with integrated transgenes at unique mapped genomic sites

Abstract

Many applications in human pluripotent stem cell (PSC) research require the genetic modification of PSCs to express a transgene in a stable and dependable manner. Random transgene integration commonly results in unpredictable and heterogeneous expression. We describe a protocol for the derivation of clonal populations of human embryonic stem cells or induced pluripotent stem cells (iPSCs) expressing a transgene from a single copy of an integrated lentiviral vector that is mapped to the genome. Using optimized transduction conditions, followed by single-cell subcloning and a round of antibiotic selection, we find that approximately half of the colonies retrieved contain a single vector copy. After expansion, the majority of these are confirmed to be clonal. The vector/genomic DNA junction is sequenced and the unique integration site is mapped to the genome. This protocol enables the efficient derivation of genetically modified PSCs containing an integrated transgene at a known genomic site in 7 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transduction with lentiviral vector to generate single-copy iPSC clones.
Figure 2: Transgene (eGFP) expression in iPSCs transduced with the TNS9.
Figure 3: Assessment of gene transfer after transduction.
Figure 4: Human iPSCs grown as colonies or single cells.
Figure 5: qPCR standards used for absolute quantification.
Figure 6: Analysis of clonality by Southern blotting.
Figure 7: Mapping the integration site by iPCR.
Figure 8: Example of sequencing read of an iPCR product.
Figure 9: Digested genomic DNA.

Similar content being viewed by others

References

  1. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Hamaguchi, I. et al. Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro. J. Virol. 74, 10778–10784 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gropp, M. et al. Stable genetic modification of human embryonic stem cells by lentiviral vectors. Mol. Ther. 7, 281–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ma, Y., Ramezani, A., Lewis, R., Hawley, R.G. & Thomson, J.A. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 21, 111–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Xiong, C. et al. Genetic engineering of human embryonic stem cells with lentiviral vectors. Stem Cells Dev. 14, 367–377 (2005).

    Article  PubMed  Google Scholar 

  7. Ellis, J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum. Gene. Ther. 16, 1241–1246 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Cherry, S.R., Biniszkiewicz, D., van Parijs, L., Baltimore, D. & Jaenisch, R. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol. Cell Biol. 20, 7419–7426 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, X., Li, Y., Crise, B. & Burgess, S.M. Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Schroder, A.R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. King, W., Patel, M.D., Lobel, L.I., Goff, S.P. & Nguyen-Huu, M.C. Insertion mutagenesis of embryonal carcinoma cells by retroviruses. Science 228, 554–558 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Li, Z. et al. Murine leukemia induced by retroviral gene marking. Science 296, 497 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Kustikova, O. et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 308, 1171–1174 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Kohn, D.B., Sadelain, M. & Glorioso, J.C. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer 3, 477–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Papapetrou, E.P. et al. Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat. Biotechnol. 29, 73–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Lavon, N., Yanuka, O. & Benvenisty, N. The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem Cells 24, 1923–1930 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, L. et al. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J. Exp. Med. 201, 1603–1614 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gropp, M. & Reubinoff, B.E. Lentiviral-RNA-interference system mediating homogenous and monitored level of gene silencing in human embryonic stem cells. Cloning Stem Cells 9, 339–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Huber, I. et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J. 21, 2551–2563 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Placantonakis, D.G. et al. BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells 27, 521–532 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Lavon, N., Yanuka, O. & Benvenisty, N. Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 72, 230–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Singh Roy, N. et al. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp. Neurol. 196, 224–234 (2005).

    Article  PubMed  Google Scholar 

  23. Eiges, R. et al. Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr. Biol. 11, 514–518 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Williams, D.A. & Thrasher, A.J. Out of harm's way. Nat. Biotechnol. 29, 41–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Giudice, A. & Trounson, A. Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell 2, 422–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Costa, M. et al. A method for genetic modification of human embryonic stem cells using electroporation. Nat. Protoc. 2, 792–796 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Lakshmipathy, U. et al. Efficient transfection of embryonic and adult stem cells. Stem Cells 22, 531–543 (2004).

    Article  PubMed  Google Scholar 

  29. Siemen, H. et al. Nucleofection of human embryonic stem cells. Stem Cells Dev. 14, 378–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Gerrard, L., Zhao, D., Clark, A.J. & Cui, W. Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23, 124–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Tomishima, M.J., Hadjantonakis, A.K., Gong, S. & Studer, L. Production of green fluorescent protein transgenic embryonic stem cells using the GENSAT bacterial artificial chromosome library. Stem Cells 25, 39–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Zwaka, T.P. & Thomson, J.A. Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21, 319–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Irion, S. et al. Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat. Biotechnol. 25, 1477–1482 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Davis, R.P. et al. Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111, 1876–1884 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Urbach, A., Schuldiner, M. & Benvenisty, N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22, 635–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Zou, J. et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5, 97–110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song, H., Chung, S.K. & Xu, Y. Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6, 80–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki, K. et al. Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proc. Natl. Acad. Sci. USA 105, 13781–13786 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khan, I.F. et al. Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol. Ther. 18, 1192–1199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kustikova, O.S. et al. Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood 102, 3934–3937 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Starr Foundation (Tri-Institutional Stem Cell Initiative, Tri-SCI-018); by New York State Stem Cell Science, NYSTEM (N08T-060); and by the National Heart, Blood and Lung Institute, NHLBI grant HL053750. We thank members of the Sadelain, Riviere, Studer and Tomishima laboratories (Memorial Sloan-Kettering Cancer Center, New York) for helpful discussions and technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

E.P.P. developed the protocol and wrote the paper. M.S. supervised the study and edited the paper.

Corresponding author

Correspondence to Eirini P Papapetrou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papapetrou, E., Sadelain, M. Derivation of genetically modified human pluripotent stem cells with integrated transgenes at unique mapped genomic sites. Nat Protoc 6, 1274–1289 (2011). https://doi.org/10.1038/nprot.2011.362

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.362

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing