Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A standardized protocol for repeated social defeat stress in mice

A Corrigendum to this article was published on 26 March 2015

This article has been updated

Abstract

A major impediment to novel drug development has been the paucity of animal models that accurately reflect symptoms of affective disorders. In animal models, prolonged social stress has proven to be useful in understanding the molecular mechanisms underlying affective-like disorders. When considering experimental approaches for studying depression, social defeat stress, in particular, has been shown to have excellent etiological, predictive, discriminative and face validity. Described here is a protocol whereby C57BL/6J mice that are repeatedly subjected to bouts of social defeat by a larger and aggressive CD-1 mouse results in the development of a clear depressive-like syndrome, characterized by enduring deficits in social interactions. Specifically, the protocol consists of three important stages, beginning with the selection of aggressive CD-1 mice, followed by agonistic social confrontations between the CD-1 and C57BL/6J mice, and concluding with the confirmation of social avoidance in subordinate C57BL/6J mice. The automated detection of social avoidance allows a marked increase in throughput, reproducibility and quantitative analysis. This protocol is highly adaptable, but in its most common form it requires 3–4 weeks for completion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Picture of the standard hamster cage used in repeated social defeat stress experiments.
Figure 2: Schematic of the social interaction arena and representative front and side pictures of a wire-mesh enclosure.
Figure 3: Repeated social defeat stress induces avoidance behavior in susceptible mice.

Change history

  • 17 December 2014

     In the version of this article initially published, there was some confusion over the interpretation of the sentence "Further, defeats should be run under constant veterinary evaluation and with full approval of all necessary institutional review boards and standards." For added clarity, the sentence was changed to read "Further, defeats should be run with full approval of all necessary institutional review boards and standards." The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Greenberg, P.E. et al. The economic burden of depression in the United States: how did it change between 1990 and 2000? J. Clin. Psychiatry 64, 1465–1475 (2003).

    Article  PubMed  Google Scholar 

  2. 2

    Krishnan, V. & Nestler, E.J. Linking molecules to mood: new insight into the biology of depression. Am. J. Psychiatry 167, 1305–1320 (2008).

    Article  Google Scholar 

  3. 3

    Krishnan, V. & Nestler, E.J. The molecular neurobiology of depression. Nature 455, 894–902 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Nestler, E.J. & Hyman, S.E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–1169 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Yehuda, R., Flory, J.D., Southwick, S. & Charney, D.S. Developing an agenda for translational studies of resilience and vulnerability following trauma exposure. Ann. NY Acad. Sci. 1071, 379–396 (2006).

    Article  PubMed  Google Scholar 

  7. 7

    Butterweck, V., Winterhoff, H. & Herkenham, M. St John's wort, hypericin, and imipramine: a comparative analysis of mRNA levels in brain areas involved in HPA axis control following short-term and long-term administration in normal and stressed rats. Mol. Psychiatry 6, 547–564 (2001).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Rygula, R. et al. Pharmacological validation of a chronic social stress model of depression in rats: effects of reboxetine, haloperidol and diazepam. Behav. Pharmacol. 19, 183–196 (2008).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Koolhaas, J.M., De Boer, S.F., De Rutter, A.J., Meerlo, P. & Sgoifo, A. Social stress in rats and mice. Acta. Physiol. Scand. Suppl. 640, 69–72 (1997).

    CAS  PubMed  Google Scholar 

  10. 10

    Kudryavtseva, N.N., Bakshtanovskaya, I.V. & Koryakina, L.A. Social model of depression in mice of C57BL/6J strain. Pharmacol. Biochem. Behav. 38, 315–320 (1991).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Miczek, K.A., Yap, J.J. & Covington, H.E. III. Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol. Ther. 120, 102–128 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Brain, P.F. Mammalian behavior and the adrenal cortex. A review. Behav. Biol. 7, 453–477 (1972).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Fuchs, E. & Flugge, G. Social stress in tree shrews: effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol. Biochem. Behav. 73, 247–258 (2002).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Rygula, R., Abumaria, N., Domenici, E., Hiemke, C. & Fuchs, E. Effects of fluoxetine on behavioral deficits evoked by chronic social stress in rats. Behav. Brain. Res. 174, 188–192 (2006).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Rygula, R. et al. Citalopram counteracts depressive-like symptoms evoked by chronic social stress in rats. Behav. Pharmacol. 17, 19–29 (2006).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Rygula, R. et al. Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav. Brain. Res. 162, 127–134 (2005).

    Article  PubMed  Google Scholar 

  17. 17

    Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868 (2006).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Tornatzky, W. & Miczek, K.A. Long-term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol. Behav. 53, 983–993 (1993).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Covington, H.E. III & Miczek, K.A. Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacology (Berl) 183, 331–340 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Berton, O. & Nestler, E.J. New approaches to antidepressant drug discovery: beyond monoamines. Nat. Rev. Neurosci. 7, 137–151 (2006).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Avgustinovich, D.F., Gorbach, O.V. & Kudryavtseva, N.N. Comparative analysis of anxiety-like behavior in partition and plus-maze tests after agonistic interactions in mice. Physiol. Behav. 61, 37–43 (1997).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Lutter, M. et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat. Neurosci. 11, 752–753 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Chuang, J.C. et al. Chronic social defeat stress disrupts regulation of lipid synthesis. J. Lipid Res. 51, 1344–1353 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Chuang, J.C. et al. A beta3-adrenergic-leptin-melanocortin circuit regulates behavioral and metabolic changes induced by chronic stress. Biol. Psychiatry 67, 1075–1082 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Lutter, M. et al. Orexin signaling mediates the antidepressant-like effect of calorie restriction. J. Neurosci. 28, 3071–3075 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Tsankova, N.M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519–525 (2006).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Li, N. et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol. Psychiatry 69, 754–761 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Covington, H.E. III et al. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 29, 11451–11460 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Wilkinson, M.B. et al. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J. Neurosci. 29, 7820–7832 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Vialou, V. et al. [Delta]FosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat. Neurosci. 13, 745–752 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Christoffel, D.J. et al. IkappaB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J. Neurosci. 31, 314–321 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Johren, O., Flugge, G. & Fuchs, E. Regulation of hippocampal glucocorticoid receptor gene expression by psychosocial conflict. Ann. NY Acad. Sci. 746, 429–430 (1994).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Blanchard, D.C. et al. Visible burrow system as a model of chronic social stress: behavioral and neuroendocrine correlates. Psychoneuroendocrinology 20, 117–134 (1995).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Koolhaas, J.M., Everts, H., de Ruiter, A.J., de Boer, S.F. & Bohus, B. Coping with stress in rats and mice: differential peptidergic modulation of the amygdala-lateral septum complex. Prog. Brain Res. 119, 437–448 (1998).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Vivian, J.A. & Miczek, K.A. Interactions between social stress and morphine in the periaqueductal gray: effects on affective vocal and reflexive pain responses in rats. Psychopharmacology (Berl) 146, 153–161 (1999).

    CAS  Article  Google Scholar 

  37. 37

    Nestler, E.J. et al. Neurobiology of depression. Neuron 34, 13–25 (2002).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Huhman, K.L. Social conflict models: can they inform us about human psychopathology? Horm. Behav. 50, 640–646 (2006).

    Article  PubMed  Google Scholar 

  39. 39

    Dadomo, H. et al. Vulnerability to chronic subordination stress-induced depression-like disorders in adult 129SvEv male mice. Prog. Neuropsychopharmacol. Biol. Psychiatry (17 November 2010).

  40. 40

    Razzoli, M. et al. Strain-specific outcomes of repeated social defeat and chronic fluoxetine treatment in the mouse. Pharmacol. Biochem. Behav. 97, 566–576 (2010).

    Article  PubMed  Google Scholar 

  41. 41

    Razzoli, M., Carboni, L., Andreoli, M., Ballottari, A. & Arban, R. Different susceptibility to social defeat stress of BALB/c and C57BL6/J mice. Behav. Brain Res. 216, 100–108 (2010).

    Article  PubMed  Google Scholar 

  42. 42

    Gimsa, U., Kanitz, E., Otten, W. & Ibrahim, S.M. Behavior and stress reactivity in mouse strains with mitochondrial DNA variations. Ann. NY Acad. Sci. 1153, 131–138 (2009).

    Article  PubMed  Google Scholar 

  43. 43

    Haenisch, B., Bilkei-Gorzo, A., Caron, M.G. & Bonisch, H. Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J. Neurochem. 111, 403–416 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Covington, H.E. III et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci. 30, 16082–16090 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Christoffel for his helpful review of this manuscript. We also acknowledge the intrepid efforts of the Mount Sinai School of Medicine animal facility personnel. This research was supported by US National Institute of Mental Health grant 1R01MH090264-01A1.

Author information

Affiliations

Authors

Contributions

S.A.G., H.E.C., O.B. and S.J.R. contributed to study design, data collection, analysis and writing.

Corresponding author

Correspondence to Scott J Russo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Golden, S., Covington, H., Berton, O. et al. A standardized protocol for repeated social defeat stress in mice. Nat Protoc 6, 1183–1191 (2011). https://doi.org/10.1038/nprot.2011.361

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links