Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of magnetic resonance–, X-ray– and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics

Abstract

Cell therapy has the potential to treat or cure a wide variety of diseases. Non-invasive cell tracking techniques are, however, necessary to translate this approach to the clinical setting. This protocol details methods to create microcapsules that are visible by X-ray, ultrasound (US) or magnetic resonance (MR) for the encapsulation and immunoisolation of cellular therapeutics. Three steps are generally used to encapsulate cellular therapeutics in an alginate matrix: (i) droplets of cell-containing liquid alginate are extruded, using an electrostatic generator, through a needle tip into a solution containing a dissolved divalent cation salt to form a solid gel; (ii) the resulting gelled spheres are coated with polycations as a cross-linker; and (iii) these complexes are then incubated in a second solution of alginate to form a semipermeable membrane composed of an inner and an outer layer of alginate. The microcapsules can be rendered visible during the first step by adding contrast agents to the primary alginate layer. Such contrast agents include superparamagnetic iron oxide for detection by 1H MR imaging (MRI); the radiopaque agents barium or bismuth sulfate for detection by X-ray modalities; or perfluorocarbon emulsions for multimodal detection by 19F MRI, X-ray and US imaging. The entire synthesis can be completed within 2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Setup of capsule synthesis equipment.
Figure 2: Magnetocapsules.
Figure 3: Barium and bismuth X-Caps.
Figure 4: 19F MR imaging of perfluoropolyether (PFPE) microcapsules.
Figure 5: CT imaging of PFOB microcapsules.
Figure 6: Ultrasound imaging of PFOB microcapsules.

Similar content being viewed by others

References

  1. Mullen, Y., Maruyama, M. & Smith, C.V. Current progress and perspectives in immunoisolated islet transplantation. J. Hepatobiliary Pancreat. Surg. 7, 347–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Schneider, S. et al. Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice. Diabetes 54, 687–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Luca, G. et al. Xenograft of microencapsulated sertoli cells reverses T1DM in NOD mice by inducing neogenesis of beta-cells. Transplantation 90, 1352–1357 (2010).

    Article  PubMed  Google Scholar 

  4. Soon-Shiong, P. et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343, 950–951 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Tuch, B.E. et al. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32, 1887–1889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tibell, A. et al. Survival of macroencapsulated allogeneic parathyroid tissue one year after transplantation in nonimmunosuppressed humans. Cell Transplant. 10, 591–599 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Borlongan, C.V. et al. Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke 35, 2206–2210 (2004).

    Article  PubMed  Google Scholar 

  8. Visted, T. et al. Prospects for delivery of recombinant angiostatin by cell-encapsulation therapy. Hum. Gene. Ther. 14, 1429–1440 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Mai, G. et al. Treatment of fulminant liver failure by transplantation of microencapsulated primary or immortalized xenogeneic hepatocytes. Transplant Proc. 37, 527–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Barnett, B.P. et al. Radiopaque alginate microcapsules for X-ray visualization and immunoprotection of cellular therapeutics. Mol. Pharm. 3, 531–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Barnett, B.P. et al. Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat. Med. 13, 986–991 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Barnett, B.P. et al. Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with MR, US, and CT imaging. Radiology 258, 182–191 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim, J. et al. Multifunctional capsule-in-capsules for immunoprotection and trimodal imaging. Angew. Chem. Int. Ed. Engl. 50, 2317–2321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bulte, J.W. et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141–1147 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ahrens, E.T., Flores, R., Xu, H. & Morel, P.A. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 23, 983–987 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Gilad, A.A. et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotechnol. 25, 217–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Kostura, L., Kraitchman, D.L., Mackay, A.M., Pittenger, M.F. & Bulte, J.W. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed. 17, 513–517 (2004).

    Article  PubMed  Google Scholar 

  18. de Vos, P., Faas, M.M., Strand, B. & Calafiore, R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27, 5603–5617 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Kakizawa, Y. et al. Controlled release of protein drugs from newly developed amphiphilic polymer-based microparticles composed of nanoparticles. J. Control. Release 142, 8–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Meunier, C.F., Dandoy, P. & Su, B.L. Encapsulation of cells within silica matrixes: towards a new advance in the conception of living hybrid materials. J. Colloid Interface Sci. 342, 211–224 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Zustiak, S.P. & Leach, J.B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11, 1348–1357 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Orive, G. & Pedraz, J.L. Highlights and trends in cell encapsulation. Adv. Exp. Med. Biol. 670, 1–4 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Gobin, Y.P., Vinuela, F., Vinters, H.V., Ji, C. & Chow, K. Embolization with radiopaque microbeads of polyacrylonitrile hydrogel: evaluation in swine. Radiology 214, 113–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Horak, D. et al. Hydrogels in endovascular embolization. III. Radiopaque spherical particles, their preparation and properties. Biomaterials 8, 142–145 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Jayakrishnan, A., Thanoo, B.C., Rathinam, K. & Mohanty, M. Preparation and evaluation of radiopaque hydrogel microspheres based on PHEMA/iothalamic acid and PHEMA/iopanoic acid as particulate emboli. J. Biomed. Mater. Res. 24, 993–1004 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Megibow, A.J. & Bosniak, M.A. Dilute barium as a contrast agent for abdominal CT. AJR Am. J. Roentgenol. 134, 1273–1274 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Rabin, O., Manuel Perez, J., Grimm, J., Wojtkiewicz, G. & Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5, 118–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Ponce, S. et al. Chemistry and the biological response against immunoisolating alginate-polycation capsules of different composition. Biomaterials 27, 4831–4839 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Morch, Y.A., Donati, I., Strand, B.L. & Skjak-Braek, G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7, 1471–1480 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Haque, T. et al. Superior cell delivery features of poly(ethylene glycol) incorporated alginate, chitosan, and poly-L-lysine microcapsules. Mol. Pharm. 2, 29–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Omer, A. et al. Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 79, 52–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Bulte, J.W. Hot spot MRI emerges from the background. Nat. Biotechnol. 23, 945–946 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Stuber, M. et al. Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn. Reson. Med. 58, 1072–1077 (2007).

    Article  PubMed  Google Scholar 

  34. Dufrane, D., Goebbels, R.M., Saliez, A., Guiot, Y. & Gianello, P. Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept. Transplantation 81, 1345–1353 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The development of this synthesis protocol was supported by a Howard Hughes Medical Institute Research Training Grant (B.P.B.), NIH grants K08 EB004348 (A.A.), R01 HL073223 (D.L.K.), R01 EB007825, U54CA151838 (J.W.M.B.) and RO1 HL084186 (M.S.).

Author information

Authors and Affiliations

Authors

Contributions

B.P.B., A.A., D.R.A., M.S., D.L.K. and J.W.M.B. designed the experiments and analyzed the data. B.P.B., A.A., M.S. and D.L.K. conducted the experiments and collected data. B.P.B. and J.W.M.B. wrote the article.

Corresponding author

Correspondence to Jeff W M Bulte.

Ethics declarations

Competing interests

The authors have a patent pending that describes the methods of composition and use of these capsules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, B., Arepally, A., Stuber, M. et al. Synthesis of magnetic resonance–, X-ray– and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics. Nat Protoc 6, 1142–1151 (2011). https://doi.org/10.1038/nprot.2011.352

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.352

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing