Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The validated embryonic stem cell test to predict embryotoxicity in vitro


In the embryonic stem cell test (EST), differentiation of mouse embryonic stem cells (mESCs) is used as a model to assess embryotoxicity in vitro. The test was successfully validated by the European Center for the Validation of Alternative Methods (ECVAM) and models fundamental mechanisms in embryotoxicity, such as cytotoxicity and differentiation. In addition, differences in sensitivity between differentiated (adult) and embryonic cells are also taken into consideration. To predict the embryotoxic potential of a test substance, three endpoints are assessed: the inhibition of differentiation into beating cardiomyocytes, the cytotoxic effects on stem cells and the cytotoxic effects on 3T3 fibroblasts. A special feature of the EST is that it is solely based on permanent cell lines so that primary embryonic cells and tissues from pregnant animals are not needed. In this protocol, we describe the ECVAM-validated method, in which the morphological assessment of contracting cardiomyocytes is used as an endpoint for differentiation, and the molecular-based FACS-EST method, in which highly predictive protein markers specific for developing heart tissue were selected. With these methods, the embryotoxic potency of a compound can be assessed in vitro within 10 or 7 d, respectively.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Overview of steps involved in the EST and the approximate time needed.
Figure 2: Pipetting scheme for the cytotoxicity assay.
Figure 3: Stages of mESC development.
Figure 4: Representative concentration-response curves (validated EST protocol).
Figure 5: Molecular FACS-EST (flow cytometry) endpoint.


  1. 1

    Schaefer, C., Peters, P.W.J. & Miller, R.K. Drugs During Pregnancy and Lactation (Elsevier, Academic Press, 2007).

  2. 2

    International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). ICH harmonized tripartite guideline: detection of toxicity to human reproduction for medicinal products & toxicity to male fertility (S5 (R2)). Current Step 4 version. (1993).

  3. 3

    Spielmann, H., Pohl, I., Döring, B., Liebsch, M. & Moldenhauer, F. The embryonic stem cell test (EST), an in vitro embryotoxicity test using two permanent mouse cell lines: 3T3 fibroblasts and embryonic stem cells. In Vitro Toxicol. 10, 119–127 (1997).

    CAS  Google Scholar 

  4. 4

    Hoffman, J.A. & Merrill, B.J. New and renewed perspectives on embryonic stem cell pluripotency. Front. Biosci. 12, 3321–3332 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Wobus, A.M. & Boheler, K. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 85, 635–678 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Laschinski, G., Vogel, R. & Spielmann, H. Cytotoxity test using blastocyst-derived euploid embryonal stem cells: a new approach to in vitro teratogenesis screening. Reprod. Toxicol. 5, 57–64 (1991).

    CAS  Article  Google Scholar 

  8. 8

    Smith, A.G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell. Dev. Biol. 17, 435–462 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Wobus, A.M., Guan, K., Yang, H.T. & Boheler, K.R. Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol. Biol. 185, 127–156 (2002).

    CAS  PubMed  Google Scholar 

  10. 10

    Doetschmann, T., Eistetter, H.R., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 7–45 (1985).

    Google Scholar 

  11. 11

    Martin, G.R., Wiley, L.M. & Damjanov, I. The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells. Dev. Biol. 61, 220–244 (1977).

    Article  Google Scholar 

  12. 12

    Genschow, E. et al. Development of prediction models for three in vitro embryotoxicity tests. In vitro Mol. Toxicol. 13, 51–65 (2000).

    CAS  Google Scholar 

  13. 13

    Genschow, E. et al. The ECVAM international validation study on in vitro embrytoxicity tests. Results of the definitive phase and evaluation of prediction models. Altern. Lab. Anim. 30, 151–176 (2002).

    CAS  PubMed  Google Scholar 

  14. 14

    Genschow, E. et al. Validation of the embryonic stem cell test (EST) in the ECVAM international validation study on in vitro embryotoxicity. Altern. Lab. Anim. 32, 209–244 (2004).

    CAS  PubMed  Google Scholar 

  15. 15

    Piersma, A.H. INVITTOX protocol no. 123: embryotoxicity testing in post-implantation embryo culture-method of piersma. 2010).

  16. 16

    Flint, O.P. & Orton, T.C. An in vitro assay for teratogens with cultures of rat embryo mid-brain and limb cells. Toxicol. Appl. Pharmacol. 76, 383–395 (1984).

    CAS  Article  Google Scholar 

  17. 17

    Bigot, K., De Lange, J., Archer, G., Clothier, R. & Bremer, S. The relative semi-quantification of mRNA expression as a useful toxicological endpoint for the identification of embryotoxic/teratogenic substances. Toxicol. In Vitro 13, 619–623 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Pellizzer, C., Adler, S., Corvi, R., Hartung, T. & Bremer, S. Monitoring of teratogenic effects in vitro by analysing a selected gene expression pattern. Toxicol. In Vitro 18, 325–335 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Chapin, R.E. & Stedman, D.B. Endless possibilities: stem cells and the vision for toxicology testing in the 21st century. Toxicol. Sci. 105, 342–350 (2008).

    Article  Google Scholar 

  20. 20

    van Dartel, D.A.M. et al. Evaluation of developmental toxicant identification using gene expression profiling in embryonic stem cell differentiation cultures. Toxicol. Sci. 119, 126–134 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Osman, A.M. et al. Proteome profiling of mouse embryonic stem cells to define markers for cell differentiation and embryotoxicity. Reprod. Toxicol. 30, 322–332 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Groebe, K. et al. Protein biomarkers for in vitro testing of embryotoxicity. J. Proteome Res. 9, 5727–5738 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Peters, K.A. et al. Evaluation of the embryotoxic potency of compounds in a newly revised high throughput embryonic stem cell test. Toxicol. Sci. 105, 342–350 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Peters, K.A. et al. Automated analysis of contractility in the embryonic stem cell test, a novel approach to assess embryotoxicity. Toxicol. In Vitro 22, 1948–1956 (2008).

    CAS  Article  Google Scholar 

  25. 25

    De Smedt, A. et al. Optimization of the cell cultivation methods in the embryonic stem cell test results in an increased differentiation potential of the cell into strong beating myocard cells. Toxicol. In Vitro 22, 1789–1796 (2008).

    CAS  Article  Google Scholar 

  26. 26

    van Dartel, D.A.M., Zeijen, N.J.L., de la Fonteyne, L.J.J., van Schooten, F.J. & Piersma, A.H. Disentangling cellular proliferation and differentiation in the embryonic stem cell test, and its impact on the experimental protocol. Reprod. Toxicol. 28, 254–261 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Spielmann, H. et al. The practical application of the three validated in vitro embryotoxicity tests. Altern. Lab. Anim. 34, 527–538 (2006).

    CAS  PubMed  Google Scholar 

  28. 28

    Marx-Stoelting, P. et al. A review of the implementation of the embryonic stem cell test (EST). Altern. Lab. Anim. 37, 313–328 (2009).

    CAS  PubMed  Google Scholar 

  29. 29

    Seiler, A., Visan, A., Buesen, R., Genschow, E. & Spielmann, H. Improvement of an in vitro stem cell assay for developmental toxicity: the use of molecular endpoints in the embryonic stem cell test. Reprod. Toxicol. 18, 231–240 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Buesen, R. et al. Embryonic stem cell test (EST) remastered: comparison between the validated EST and the new molecular FACS-EST for assessing developmental toxicity in vitro. Toxicol. Sci. 108, 389–400 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Maltsev, V.A., Wobus, A.M., Rohwedel, J., Bader, M. & Hescheler, J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res. 75, 233–244 (1994).

    CAS  Article  Google Scholar 

  32. 32

    Murry, C.E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Sachinidis, A. et al. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc. Res. 58, 278–291 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Boheler, K.R. et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91, 189–201 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Scholz, G. & Spielmann, H. INVITTOX protocol 113. Embryonic Stem Cell Test (EST). (updated 2010).

  36. 36

    Spielmann, H. Predicting the risk of developmental toxicity from in vitro assays. Toxicol. Appl. Pharmacol. 207, 375–380 (2005).

    Article  Google Scholar 

  37. 37

    Piersma, A.H. Alternative methods for developmental toxicity testing. Basic Clin. Pharm. Toxicol. 98, 427–431 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Brown, N.A. et al. Screening chemicals for reproductive toxicity: the current alternatives. The report and recommendations of an ECVAM/ETS workshop (ECVAM workshop 12). Altern. Lab. Anim. 23, 868–882 (1995).

    Google Scholar 

  39. 39

    Brown, N.A. INVITTOX protocol no. 122: The Micromass Test—Method of Brown. (updated 2010).

  40. 40

    Spielmann, H. et al. Validation of the micromass assay (MM) in the ECVAM international validation study on in vitro embryotoxicity. Altern. Lab. Anim. 32, 245–274 (2004).

    CAS  PubMed  Google Scholar 

  41. 41

    Piersma, A.H. et al. Validation of the rat postimplantation whole embryo culture in the ECVAM international validation study on in vitro embryotoxicity. Altern. Lab. Anim. 32, 275–307 (2004).

    CAS  PubMed  Google Scholar 

  42. 42

    Balls, M. & Hellsten, E. Statement of the scientific validity of the embryonic stem cell test (EST)—an in vitro test for embryotoxicity. Statement of the scientific validity of the micromass test—an in vitro test for embryotoxicity. Statement of the scientific validity of the postimplantation rat whole embryo culture assay—an in vitro test for embryotoxicity. Altern. Lab. Anim. 30, 265–273 (2002).

    PubMed  Google Scholar 

  43. 43

    Stummann, T.C., Hareng, L. & Bremer, S. Embryotoxicity hazard assessment of cadmium and arsenic compounds using embryonic stem cells. Toxicol 252, 118–122 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Schenk, B. et al. The ReProTect feasibility study, a novel comprehensive in vitro approach to detect reproductive toxicants. Reprod. Toxicol. 30, 200–218 (2010).

    CAS  Article  Google Scholar 

  45. 45

    OEHHA. Evidence on Developmental and Reproductive Toxicity of Inorganic Arsenic. Office of Environmental Health Hazard Assessment, 68. (1996).

  46. 46

    Brown, N.A. Selection of test chemicals for the ECVAM international validation study on in vitro embryotoxicity tests. Altern. Lab. Anim. 30, 177–198 (2002).

    CAS  PubMed  Google Scholar 

  47. 47

    International Program on Chemical Safety (IPCS, INCHEM). WHO/FAO data sheets on pesticides. No. 84, Nitrofen. (1996).

  48. 48

    Paquette, J.A. et al. Assessment of the embryonic stem cell test and application and use in the pharmaceutical industry. Birth Defects Res. B Dev. Reprod. Toxicol. 283, 104–111 (2008).

    Article  Google Scholar 

  49. 49

    De Jong, E. et al. Relative developmental toxicity of glycol ether alkoxy acid metabolites in the embryonic stem cell test as compared with the in vivo potency of their parent compound. Toxicol. Sci. 110, 117–124 (2009).

    CAS  Article  Google Scholar 

  50. 50

    Riebeling, C. et al. Evaluation of structure-activity relationships in the teratogenicity of valproic acid derivatives using the embryonic stem cell test. Toxicol. Sci. 120, 360–370 (2011).

    CAS  Article  Google Scholar 

  51. 51

    West, P.R., Weir, A.M., Smith, A.M., Donley, E.L.R. & Cezar, G.G. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol. Appl. Pharmacol. 247, 18–27 (2009).

    Article  Google Scholar 

  52. 52

    Wobus, A.M., Wallukat, G. & Hescheler, J. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48, 173–182 (1991).

    CAS  Article  Google Scholar 

  53. 53

    Bader, D., Masaki, T. & Fischmann, D.A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell. Biol. 95, 763–770 (1982).

    CAS  Article  Google Scholar 

  54. 54

    Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. lmmunol. Methods 65, 55–63 (1983).

    CAS  Article  Google Scholar 

  55. 55

    BD CellQuest Pro software user's guide (Becton Dickinson, Heidelberg, Germany). (2002).

  56. 56

    Shapiro, H.M. Measuring cell surface and intracellular antigens. In Practical Flow Cytometry edn. 4 (ed. Shapiro, H.M.) 345–361 (John Wiley & Sons, 2003).

  57. 57

    Ritz, C. & Streibig, J.C. Bioassay analysis using R. J. Statist. Software 12, 1–22 (2005).

    Article  Google Scholar 

  58. 58

    Scholz, G. et al. Prevalidation of the embryonic stem cell test (EST)—A new in vitro embryotoxicity test. Toxicol. In Vitro 13, 675–681 (1999).

    CAS  Article  Google Scholar 

  59. 59

    Eppenberger-Eberhardt, M., Flamme, I., Kurer, V. & Eppenberger, H.M. Reexpression of alpha-smooth muscle actin isoform in cultured adult rat cardiomyocytes. Dev. Biol. 139, 269–278 (1990).

    CAS  Article  Google Scholar 

Download references


We thank A. Visan and R. Buesen for conducting flow cytometry analyses, EST experiments and preparing illustrations, B. Slawik for excellent technical assistance, R. Pirow for excellent statistical support, C. Riebeling for critical reading of the manuscript and for his valuable contribution to the preparation of the figures and G. Friedmann-Marohn for his excellent technical support in preparing high-resolution artwork.

This work was supported in part by the German Federal Ministry of Education and Research BMBF grants 0312312 and 0313070A.

Author information




A.E.M.S. was involved in protocol design, analysis of the experiments and preparation of the manuscript. H.S. was involved in protocol design, analysis of the experiments and preparation of the manuscript.

Corresponding author

Correspondence to Andrea E M Seiler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seiler, A., Spielmann, H. The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 6, 961–978 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing