Using the Q system in Drosophila melanogaster

Abstract

In Drosophila, the GAL4/UAS/GAL80 repressible binary expression system is widely used to manipulate or mark tissues of interest. However, complex biological systems often require distinct transgenic manipulations of different cell populations. For this purpose, we recently developed the Q system, a second repressible binary expression system. We describe here the basic steps for performing a variety of Q system experiments in vivo. These include how to generate and use Q system reagents to express effector transgenes in tissues of interest, how to use the Q system in conjunction with the GAL4 system to generate intersectional expression patterns that precisely limit which tissues will be experimentally manipulated and how to use the Q system to perform mosaic analysis. The protocol described here can be adapted to a wide range of experimental designs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic and example of Q system components in Drosophila.
Figure 2: Flowchart of example GAL4 and Q system applications.
Figure 3: Crossing scheme for tissue-specific QS suppression of QF.
Figure 4: Crossing scheme for ubiquitous QS-mediated suppression of QF coupled with quinic acid treatment.
Figure 5: Using the Q system with the GAL4 system for generating intersectional expression patterns.
Figure 6: Crossing scheme for GAL4 NOT QF intersectional experiments.
Figure 7: Crossing scheme for QF NOT GAL4 intersectional experiments.
Figure 8: Crossing scheme for QF AND GAL4 intersectional experiments.
Figure 9: Schematic and example of Q-based mosaic analysis with a repressible cell marker (Q-MARCM).
Figure 10: Schematic and example of coupled MARCM.
Figure 11: Example intersectional expression experiments between GAL4 and QF olfactory projection neuron lines.

References

  1. 1

    Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  2. 2

    Duffy, J.B. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1–15 (2002).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Potter, C.J., Tasic, B., Russler, E.V., Liang, L. & Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536–548 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Baum, J.A., Geever, R. & Giles, N.H. Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain. Mol. Cell Biol. 7, 1256–1266 (1987).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Geever, R.F. et al. DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. J. Mol. Biol. 207, 15–34 (1989).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Giles, N.H., Geever, R.F., Asch, D.K., Avalos, J. & Case, M.E. The Wilhelmine E. Key 1989 invitational lecture. Organization and regulation of the qa (quinic acid) genes in Neurospora crassa and other fungi. J. Hered. 82, 1–7 (1991).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Huiet, L. Molecular analysis of the Neurospora qa-1 regulatory region indicates that two interacting genes control qa gene expression. Proc. Natl. Acad. Sci. USA 81, 1174–1178 (1984).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Patel, V.B. & Giles, N.H. Autogenous regulation of the positive regulatory qa-1F gene in Neurospora crassa. Mol. Cell Biol. 5, 3593–3599 (1985).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Wu, J.S. & Luo, L. A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat. Protoc. 1, 2583–2589 (2006).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Berdnik, D., Fan, A.P., Potter, C.J. & Luo, L. MicroRNA processing pathway regulates olfactory neuron morphogenesis. Curr. Biol. 18, 1754–1759 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Jefferis, G.S.X.E. et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187–1203 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Schuldiner, O. et al. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev. Cell 14, 227–238 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Lai, S.-L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703–709 (2006).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Yagi, R., Mayer, F. & Basler, K. Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc. Natl Acad. Sci. USA 107, 16166–16171 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Pfeiffer, B.D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Suster, M.L., Seugnet, L., Bate, M. & Sokolowski, M.B. Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis 39, 240–245 (2004).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Luan, H., Peabody, N.C., Vinson, C.R. & White, B.H. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52, 425–436 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Lai, S.-L., Awasaki, T., Ito, K. & Lee, T. Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development 135, 2883–2893 (2008).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Yu, H., Chen, C., Shi, L., Huang, Y. & Lee, T. Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat. Neurosci. 12, 947–953 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Yu, H.-H. et al. A complete developmental sequence of a Drosophila neuronal lineage as revealed by Twin-Spot MARCM. PLoS Biol. 8, (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Griffin, R. et al. The twin spot generator for differential Drosophila lineage analysis. Nat. Methods 6, 600–602 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Fishilevich, E. et al. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr. Biol. 15, 2086–2096 (2005).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Ang, L.-H. et al. Lim kinase regulates the development of olfactory and neuromuscular synapses. Dev. Biol. 293, 178–190 (2006).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Venken, K. et al. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat. Methods 6, 431–434 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Markstein, M., Pitsouli, C., Villalta, C., Celniker, S.E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet. 40, 476–483 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Sullivan, W., Ashburner, M. & Scott Hawley, R. Drosophila Protocols. Cold Spring Harbor Laboratory Press (2000).

  31. 31

    Wu, J.S. & Luo, L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat. Protoc. 1, 2110–2115 (2006).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Watts, R.J., Schuldiner, O., Perrino, J., Larsen, C. & Luo, L. Glia engulf degenerating axons during developmental axon pruning. Curr. Biol. 14, 678–684 (2004).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    LaJeunesse, D.R. et al. Three new Drosophila markers of intracellular membranes. BioTechniques 36, 784–788, 790 (2004).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Nicolai, L.J. et al. Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc. Natl. Acad. Sci. USA 107, 20553–20558 (2010).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Grieder, N.C., de Cuevas, M. & Spradling, A.C. The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127, 4253–4264 (2000).

    CAS  PubMed  Google Scholar 

  36. 36

    Potter, C.J., Huang, H. & Xu, T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105, 357–368 (2001).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Potter, C.J., Pedraza, L.G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658–665 (2002).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Zhou, C., Rao, Y. & Rao, Y. A subset of octopmanergic neurons play important roles in Drosophila aggression. Nat. Neurosci. 11, 1059–1067 (2008).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 (1994).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Grether, M.E., Abrams, J.M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708 (1995).

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Chen, P., Nordstrom, W., Gish, B. & Abrams, J.M. grim, a novel cell death gene in Drosophila. Genes Dev. 10, 1773–1782 (1996).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Seelig, J.D. et al. Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat. Methods 7, 535–540 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Prober, D.A. & Edgar, B.A. Interactions between Ras1, dMyc, and dPI3K signaling in the developing Drosophila wing. Genes Dev. 16, 2286–2299 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Shi, L., Yu, H.H., Yang, J.S. & Lee, T. Specific Drosophila Dscam juxtamembrane variants control dendritic elaboration and axonal arborization. J. Neurosci. 27, 6723–6728 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Zhang, W., Ge, W. & Wang, Z. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons. Eur. J. Neurosci. 26, 2405–2416 (2007).

    Article  PubMed  Google Scholar 

  48. 48

    Peabody, N.C. et al. Characterization of the decision network for wing expansion in Drosophila using targeted expression of the TRPM8 channel. J. Neurosci. 29, 3343–3353 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Hamada, F.N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Paradis, S., Sweeney, S.T. & Davis, G.W. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30, 737–749 (2001).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Sweeney, S.T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C.J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995).

    CAS  Article  Google Scholar 

  53. 53

    Suster, M.L., Martin, J.-R., Sung, C. & Robinow, S. Targeted expression of tetanus toxin reveals sets of neurons involved in larval locomotion in Drosophila. J. Neurobiol. 55, 233–246 (2003).

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Xu, T. & Rubin, G.M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Russler for the image in Figure 11e, and C.-C. Lin and S. Chin for critical reading of the manuscript. C.J.P. is supported by a startup fund from The Center for Sensory Biology at the Johns Hopkins University School of Medicine. L.L. is a Howard Hughes Medical Institute investigator.

Author information

Affiliations

Authors

Contributions

C.J.P. designed and performed the experiments and generated the figures and tables; C.J.P. and L.L. wrote the paper.

Corresponding author

Correspondence to Christopher J Potter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Available Q system DNA constructs. (DOCX 117 kb)

Supplementary Table 2

Available Q system transgenic fly stocks. (DOCX 130 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Potter, C., Luo, L. Using the Q system in Drosophila melanogaster. Nat Protoc 6, 1105–1120 (2011). https://doi.org/10.1038/nprot.2011.347

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing