Abstract
Phage λ-Red proteins are powerful tools for pulling and knocking out chromosomal fragments but have been limited to the γ-proteobacteria. Procedures are described here to easily knock out (KO) and pull out (PO) chromosomal DNA fragments from naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei. This system takes advantage of published compliant counterselectable and selectable markers (sacB, pheS, gat and the arabinose-utilization operon) and λ-Red mutant proteins. pheS-gat (KO) or oriT-ColE1ori-gat-ori1600-rep (PO) PCR fragments are generated with flanking 40- to 45-bp homologies to targeted regions incorporated on PCR primers. One-step recombination is achieved by incubation of the PCR product with cells expressing λ-Red proteins and subsequent selection on glyphosate-containing medium. This procedure takes ∼10 d and is advantageous over previously published protocols: (i) smaller PCR products reduce primer numbers and amplification steps, (ii) PO fragments suitable for downstream manipulation in Escherichia coli are obtained and (iii) chromosomal KO increases flexibility for downstream processing.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Identification of a PadR-type regulator essential for intracellular pathogenesis of Burkholderia pseudomallei
Scientific Reports Open Access 17 May 2021
-
The Burkholderia pseudomallei intracellular ‘TRANSITome’
Nature Communications Open Access 26 March 2021
-
The heritable natural competency trait of Burkholderia pseudomallei in other Burkholderia species through comE and crp
Scientific Reports Open Access 20 August 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Sawitzke, J.A. et al. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Meth. Enzymol. 421, 171–199 (2007).
Zhang, Y., Muyrers, J.P.P., Testa, G. & Stewart, A.F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314–1317 (2000).
Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).
Sun, W., Wang, S. & Curtiss, R. III. Highly efficient methods for introducing successive multiple scarless gene deletions and markerless gene insertions into the Yersinia pestis chromosome. Appl. Environ. Microbiol. 74, 4241–4245 (2008).
Lesic, B. & Rahme, L.G. Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol. Biol. 9, 20 (2008).
Wiersinga, W.J., van der Poll, T., White, N.J., Day, N.P. & Peacock, S.J. Melioidosis: insight into the pathogenicity of Burkholderia pseudomallei. Nat. Rev. Microbiol. 4, 272–282 (2006).
Thongdee, M. et al. Targeted mutagenesis of Burkholderia pseudomallei and Burkholderia thailandensis through natural transformation of PCR fragments. Appl. Environ. Microbiol. 74, 2985–2989 (2008).
Barrett, A.R. et al. Genetic tools for allelic replacement in Burkholderia species. Appl. Environ. Microbiol. 74, 4498–4508 (2008).
Norris, M.H., Kang, Y., Lu, D., Wilcox, B.A. & Hoang, T.T. Glyphosate resistance as a novel select-agent-compliant, non-antibiotic selectable marker in chromosomal mutagenesis of the essential genes asd and dapB of Burkholderia pseudomallei. Appl. Environ. Microbiol. 75, 6062–6075 (2009).
Moore, R.A. et al. Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei. Infect. Immun. 72, 4172–4187 (2004).
Chandler, J.R. et al. Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J. Bacteriol. 191, 5901–5909 (2009).
Choi, K.-H., Kumar, A. & Schweizer, H.P. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for the DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Meth. 64, 391–397 (2006).
Mack, K. & Titball, R.W. Transformation of Burkholderia pseudomallei by electroporation. Anal. Biochem. 242, 73–76 (1996).
Lopez, C.M., Rholl, D.A., Trunck, L.A. & Schweizer, H.P. Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei. Appl. Environ. Microbiol. 75, 6496–6503 (2009).
Choi, K.H. et al. Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei. Appl. Environ. Microbiol. 74, 1064–1075 (2008).
Antoine, R. & Locht, C. Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from Gram-positive organisms. Mol. Microbiol. 6, 1785–1799 (1991).
Nakayama, M. & Ohara, O. Improvement of recombination efficiency by mutation of Red proteins. BioTechniques 38, 917–924 (2005).
Alice, A.F., Lopez, C.S., Lowe, C.A., Ledesma, M.A. & Crosa, J.H. Genetic and transcriptional analysis of the siderophore malleobactin biosynthesis and transport genes in the human pathogen Burkholderia pseudomallei K96243. J. Bacteriol. 188, 1551–1566 (2006).
Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual 2nd edn, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2001).
Wilson, D.E. & Chosewood, L.C. Biosafety in Microbiological and Biomedical Laboratories (BMBL) 5th edn. (Centers for Disease Control and Prevention, Atlanta, Georgia, USA, 2007).
Rholl, D.A., Trunck, L.A. & Schweizer, H.P. Himar1 in vivo transposon mutagenesis of Burkholderia pseudomallei. Appl. Environ. Microbiol. 74, 7529–7535 (2008).
Yanisch-Perron, C., Vieira, J. & Messing, J. Improved M13 cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119 (1985).
Kovach, M.E. et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176 (1995).
Schweizer, H.P., Klassen, T.R. & Hoang, T. Improved methods for gene analysis and expression in Pseudomonas. In Molecular Biology of Pseudomonads. (eds. Nakazawa, T., Furukawa, K., Haas, D. & Silver, S.) 229–237 (American Society for Microbiology, Washington, D.C., USA, 1996).
Cardona, S.T. & Valvano, M.A. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia. Plasmid 54, 219–228 (2005).
Yu, M. & Tsang, J.S.H. Use of ribosomal promoters from Burkholderia cenocepacia and Burkholderia cepacia for improved expression of transporter protein in Escherichia coli. Protein Expr. Purif. 49, 219–227 (2006).
Schwyn, B. & Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56 (1987).
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).
DeShazer, D., Brett, P.J., Carlyon, R. & Woods, D.E. Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: isolation of motility mutant and molecular characterization of the flagellin structural gene. J. Bacteriol. 179, 2116–2125 (1997).
Brett, P.J., DeShazer, D. & Woods, D.E. Burkholderia thailandensis sp. nov., description of Burkholderia pseudomallei-like species. Int. J. Syst. Bacteriol. 48, 317–320 (1998).
Kang, Y., Norris, M.H., Barrett, A.R., Wilcox, B.A. & Hoang, T.T. Engineering of tellurite-resistant genetic tools for single-copy chromosomal analysis of Burkholderia spp. and characterization of the B. thailandensis betBA-operon. Appl. Environ. Microbiol. 75, 4015–4027 (2009).
Acknowledgements
The project described was supported by Award Number AI065359 from the US National Institute of Allergy and Infectious Diseases and in part by the Center of Biomedical Research Excellence grant P20RR018727 from the National Center for Research Resources (both components of the NIH). We are grateful to H.P. Schweizer for the generous gift of constructs containing a modified sacB gene and the rhamnose-inducible promoter.
Author information
Authors and Affiliations
Contributions
Y.K. created the constructs and performed the experiments in B. pseudomallei. M.H.N. performed the experiments in B. thailandensis. B.A.W. provided guidance for M.H.N. in this project. A.T. and P.S.K. isolated and sequenced the B. pseudomallei clinical and environmental isolates on Table 1. T.T.H. designed and supervised the experiments. Y.K., M.H.N. and T.T.H. wrote this manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Kang, Y., Norris, M., Wilcox, B. et al. Knockout and pullout recombineering for naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei. Nat Protoc 6, 1085–1104 (2011). https://doi.org/10.1038/nprot.2011.346
Published:
Issue Date:
DOI: https://doi.org/10.1038/nprot.2011.346
This article is cited by
-
The Burkholderia pseudomallei intracellular ‘TRANSITome’
Nature Communications (2021)
-
Identification of a PadR-type regulator essential for intracellular pathogenesis of Burkholderia pseudomallei
Scientific Reports (2021)
-
Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing
Applied Microbiology and Biotechnology (2019)
-
The heritable natural competency trait of Burkholderia pseudomallei in other Burkholderia species through comE and crp
Scientific Reports (2018)
-
An avirulent Burkholderia pseudomallei ∆purM strain with atypical type B LPS: expansion of the toolkit for biosafe studies of melioidosis
BMC Microbiology (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.