Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

mRNA display for the selection and evolution of enzymes from in vitro-translated protein libraries

Abstract

The mRNA display technology enables the in vitro selection and directed evolution of functional proteins from libraries of more than 1012 different mutants in a single test tube. The size of these libraries is well beyond the limit of screening technologies and of most in vivo and in vitro selection methods. The mRNA display technology has been used to select peptides and proteins that bind to a specific ligand, as well as novel enzymes. This protocol details the procedure to produce mRNA-displayed proteins (3 d) and to subject them to a selection and evolution of enzymes for bond-forming reactions (4–10 weeks). This method is demonstrated by the generation of new RNA ligase enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview scheme of the selection of enzymes for bond-forming reactions by mRNA display.
Figure 2: DNA library design for an mRNA display selection.
Figure 3: Selection of enzymes catalyzing a bond-forming reaction of two substrates, A and B.
Figure 4: Autoradiogram of an electrophoresis gel of radiolabeled mRNA-displayed proteins.
Figure 5: Selection progress.

Similar content being viewed by others

References

  1. Böttcher, D. & Bornscheuer, U.T. Protein engineering of microbial enzymes. Curr. Opin. Microbiol. 13, 274–282 (2010).

    Article  Google Scholar 

  2. Leemhuis, H., Kelly, R.M. & Dijkhuizen, L. Directed evolution of enzymes: library screening strategies. IUBMB Life 61, 222–228 (2009).

    Article  CAS  Google Scholar 

  3. Romero, P.A. & Arnold, F.H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876 (2009).

    Article  CAS  Google Scholar 

  4. Jackel, C., Kast, P. & Hilvert, D. Protein design by directed evolution. Ann. Rev. Biophys. 37, 153–173 (2008).

    Article  CAS  Google Scholar 

  5. Turner, N.J. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5, 568–574 (2009).

    Article  Google Scholar 

  6. Roberts, R.W. & Szostak, J.W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302 (1997).

    Article  CAS  Google Scholar 

  7. Nemoto, N., Miyamoto-Sato, E., Husimi, Y. & Yanagawa, H. In vitro virus: Bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 414, 405–408 (1997).

    Article  CAS  Google Scholar 

  8. Kurz, M., Gu, K., Al-Gawari, A. & Lohse, P.A. cDNA-Protein fusions: covalent protein-gene conjugates for the in vitro selection of peptides and proteins. Chembiochem. 2, 666–672 (2001).

    Article  CAS  Google Scholar 

  9. Takahashi, T.T., Austin, R.J. & Roberts, R.W. mRNA display: ligand discovery, interaction analysis and beyond. Trends Biochem. Sci. 28, 159–165 (2003).

    Article  CAS  Google Scholar 

  10. Xu, L.H. et al. Directed evolution of high-affinity antibody mimics using mRNA display. Chem. Biol. 9, 933–942 (2002).

    Article  CAS  Google Scholar 

  11. Shen, X.C., Valencia, C.A., Szostak, J., Dong, B. & Liu, R.H. Scanning the human proteome for calmodulin-binding proteins. Proc. Natl. Acad. Sci. USA 102, 5969–5974 (2005).

    Article  CAS  Google Scholar 

  12. Fukuda, I. et al. In vitro evolution of single-chain antibodies using mRNA display. Nucleic Acids Res. 34, e127 (2006).

    Article  Google Scholar 

  13. Wilson, D.S., Keefe, A.D. & Szostak, J.W. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl. Acad. Sci. USA 98, 3750–3755 (2001).

    Article  CAS  Google Scholar 

  14. Raffler, N.A., Schneider-Mergener, J. & Famulok, M. A novel class of small functional peptides that bind and inhibit human alpha-thrombin isolated by mRNA display. Chem. Biol. 10, 69–79 (2003).

    Article  CAS  Google Scholar 

  15. Huang, B.C. & Liu, R. Comparison of mRNA-display-based selections using synthetic peptide and natural protein Libraries. Biochemistry 46, 10102–10112 (2007).

    Article  CAS  Google Scholar 

  16. Millward, S.W., Takahashi, T.T. & Roberts, R.W. A general route for post-translational cyclization of mRNA display libraries. J. Am. Chem. Soc. 127, 14142–14143 (2005).

    Article  CAS  Google Scholar 

  17. Seebeck, F.P. & Szostak, J.W. Ribosomal synthesis of dehydroalanine-containing peptides. J. Am. Chem. Soc. 128, 7150–7151 (2006).

    Article  CAS  Google Scholar 

  18. Frankel, A., Millward, S.W. & Roberts, R.W. Encodamers: Unnatural peptide oligomers encoded in RNA. Chem. Biol. 10, 1043–1050 (2003).

    Article  CAS  Google Scholar 

  19. Josephson, K., Hartman, M.C.T. & Szostak, J.W. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc. 127, 11727–11735 (2005).

    Article  CAS  Google Scholar 

  20. Keefe, A.D. & Szostak, J.W. Functional proteins from a random-sequence library. Nature 410, 715–718 (2001).

    Article  CAS  Google Scholar 

  21. Liu, R.H., Barrick, J.E., Szostak, J.W. & Roberts, R.W. Optimized synthesis of RNA-protein fusions for in vitro protein selection. Methods Enzymol. 318, 268–293 (2000).

    Article  CAS  Google Scholar 

  22. Keefe, A.D. Protein selection using mRNA display. Current Protocols in Molecular Biology 24, 24.5.1–24.5.34 (1 May 2001).

    Google Scholar 

  23. Takahashi, T.T. & Roberts, R.W. In vitro selection of protein and peptide libraries using mRNA display. In Nucleic Acid and Peptide Aptamers: Methods and Protocols - Methods in Molecular Biology Vol. 535 (ed. G. Mayer) (Humana Press, 2009).

  24. Seelig, B. & Szostak, J.W. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448, 828–831 (2007).

    Article  CAS  Google Scholar 

  25. Tawfik, D.S. & Griffiths, A.D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16, 652–656 (1998).

    Article  CAS  Google Scholar 

  26. Miller, O.J. et al. Directed evolution by in vitro compartmentalization. Nat. Methods 3, 561–570 (2006).

    Article  CAS  Google Scholar 

  27. Hanes, J. & Pluckthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942 (1997).

    Article  CAS  Google Scholar 

  28. Zahnd, C., Amstutz, P. & Pluckthun, A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat. Methods 4, 269–279 (2007).

    Article  CAS  Google Scholar 

  29. Cesaro-Tadic, S. et al. Turnover-based in vitro selection and evolution of biocatalysts from a fully synthetic antibody library. Nat. Biotechnol. 21, 679–685 (2003).

    Article  CAS  Google Scholar 

  30. Takahashi, F. et al. Activity-based in vitro selection of T4 DNA ligase. Biochem. Biophys. Res. Commun. 336, 987–993 (2005).

    Article  CAS  Google Scholar 

  31. Bloom, J.D. et al. Evolving strategies for enzyme engineering. Curr. Opin. Struct. Biol. 15, 447–452 (2005).

    Article  CAS  Google Scholar 

  32. Wang, T.W. et al. Mutant library construction in directed molecular evolution. Mol. Biotechnol. 34, 55–68 (2006).

    Article  Google Scholar 

  33. Shivange, A.V., Marienhagen, J., Mundhada, H., Schenk, A. & Schwaneberg, U. Advances in generating functional diversity for directed protein evolution. Curr. Opin. Chem. Biol. 13, 19–25 (2009).

    Article  CAS  Google Scholar 

  34. Reetz, M.T. & Carballeira, J.D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protocols 2, 891–903 (2007).

    Article  CAS  Google Scholar 

  35. Cho, G., Keefe, A.D., Liu, R.H., Wilson, D.S. & Szostak, J.W. Constructing high complexity synthetic libraries of long ORFs using in vitro selection. J. Mol. Biol. 297, 309–319 (2000).

    Article  CAS  Google Scholar 

  36. Kurz, M., Gu, K. & Lohse, P.A. Psoralen photo-crosslinked mRNA-puromycin conjugates: a novel template for the rapid and facile preparation of mRNA-protein fusions. Nucl. Acids Res. 28, e83 (2000).

    Article  CAS  Google Scholar 

  37. Miyamoto-Sato, E. et al. Highly stable and efficient mRNA templates for mRNA-protein fusions and C-terminally labeled proteins. Nucl. Acids Res. 31, e78 (2003).

    Article  Google Scholar 

  38. Sambrook, J. & Russel, D.W. Molecular Cloning: a Laboratory Manual (Cold Spring Harb. Lab. Press, 2001).

  39. Moore, M.J. & Sharp, P.A. Site-specific modification of pre-MRNA: the 2′-hydroxyl groups at the splice sites. Science 256, 992–997 (1992).

    Article  CAS  Google Scholar 

  40. Hassur, S.M. & Whitlock, H.W. UV shadowing—a new and convenient method for the location of ultraviolet-absorbing species in polyacrylamide gels. Anal. Biochem. 59, 162–164 (1974).

    Article  CAS  Google Scholar 

  41. Sambrook, J. & Russel, D.W. Isolation of DNA fragments from polyacrylamide gels by the crush and soak method. Cold Spring Harb. Protoc. 2006 10.1101/pdb.prot2936 (2006).

  42. Golynskiy, M.V. & Seelig, B. De novo enzymes: from computational design to mRNA display. Trends Biotechnol. 28, 340–345 (2010).

    Article  CAS  Google Scholar 

  43. Cadwell, R.C. & Joyce, G.F. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28–33 (1992).

    Article  CAS  Google Scholar 

  44. Wilson, D.S. & Keefe, A.D. Random mutagenesis by PCR. Current Protocols in Molecular Biology Unit 8.3, 8.3.1–8.3.9 2001.

    Google Scholar 

  45. Stemmer, W.P.C. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  Google Scholar 

  46. Wong, T.S., Roccatano, D. & Schwaneberg, U. Steering directed protein evolution: strategies to manage combinatorial complexity of mutant libraries. Environ. Microbiol. 9, 2645–2659 (2007).

    Article  CAS  Google Scholar 

  47. Zhao, H.M. & Zha, W.J. In vitro 'sexual' evolution through the PCR-based staggered extension process (StEP). Nat. Protoc. 1, 1865–1871 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks J.W. Szostak and members of the Szostak lab for their advice and help. The author is supported in part by the National Aeronautics and Space Administration under Agreement No. NNX09AH70A issued through the NASA Astrobiology Institute/Ames Research Center.

Author information

Authors and Affiliations

Authors

Contributions

B.S. is solely responsible for this manuscript.

Corresponding author

Correspondence to Burckhard Seelig.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seelig, B. mRNA display for the selection and evolution of enzymes from in vitro-translated protein libraries. Nat Protoc 6, 540–552 (2011). https://doi.org/10.1038/nprot.2011.312

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.312

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research