Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening

Abstract

Batch culture of biofilms on peg lids is a versatile method that can be used for microtiter determinations of biofilm antimicrobial susceptibility. In this paper, we describe a core protocol and a set of parameters (surface composition, the rate of rocking or orbital motion, temperature, cultivation time, inoculum size, atmospheric gases and nutritional medium) that can be adjusted to grow single- or multispecies biofilms on peg surfaces. Mature biofilms formed on peg lids can then be fitted into microtiter plates containing test agents. After a suitable exposure time, biofilm cells are disrupted into a recovery medium using sonication. Microbicidal endpoints can be determined qualitatively using optical density measurements or quantitatively using viable cell counting. Once equipment is calibrated and growth conditions are at an optimum, the procedure requires 5 h of work over 4–6 d. This efficient method allows antimicrobial agents and exposure conditions to be tested against biofilms on a high-throughput scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of a peg lid biofilm reactor, using the Calgary Biofilm Device (CBD) as an example.
Figure 2: Flowchart and timeline for biofilm cultivation and antimicrobial susceptibility testing of biofilms growing on peg lids.
Figure 3: Measurement and calibration of the rocking table angle.
Figure 4: The basics: reading qualitative endpoints from patterns in recovery plates and interpreting biofilm survival data from kill curves.
Figure 5: Time-depending killing of P. aeruginosa ATCC 27853 biofilms exposed to the aminoglycoside gentamicin for 2 or 20 h.

Similar content being viewed by others

References

  1. Wiegand, I., Hilpert, K. & Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

    Article  CAS  Google Scholar 

  2. Karatan, E. & Watnick, P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73, 310–347 (2009).

    Article  CAS  Google Scholar 

  3. Stewart, P.S. & Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008).

    Article  CAS  Google Scholar 

  4. Boles, B.B., Theondel, M. & Singh, P.K. Self-generated diversity produces 'insurance effects' in biofilm communities. Proc. Natl. Acad. Sci. USA. 101, 16630–16635 (2004).

    Article  CAS  Google Scholar 

  5. Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48–56 (2007).

    Article  CAS  Google Scholar 

  6. Stewart, P.S. & Costerton, J.W. The antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138 (2001).

    Article  CAS  Google Scholar 

  7. Harrison, J.J., Ceri, H. & Turner, R.J. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 5, 928–938 (2007).

    Article  CAS  Google Scholar 

  8. Drenkard, E. & Ausubel, F.M. Pseudomonas biofilm formation and antibioitic resistance are linked to phenotypic variation. Nature 416, 740–743 (2002).

    Article  CAS  Google Scholar 

  9. Costerton, J.W., Stewart, P.S. & Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  Google Scholar 

  10. Parsek, M.R. & Singh, P.K. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57, 677–701 (2003).

    Article  CAS  Google Scholar 

  11. Hall-Stoodley, L. et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. J. Am. Med. Assoc. 296, 202–211 (2006).

    Article  CAS  Google Scholar 

  12. Mandel, E.M. & Casselbrant, M.L. Antibiotics for otitis media with effusion. Minerva Pediatr. 56, 481–495 (2004).

    CAS  PubMed  Google Scholar 

  13. Slinger, R. et al. Multiple combination antibiotic susceptibility testing of nontypeable Haemophilus influenzae biofilms. Diagn. Microbiol. Infect. Dis. 56, 247–253 (2006).

    Article  CAS  Google Scholar 

  14. Pierce, C.G. et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 3, 1494–1500 (2008).

    Article  CAS  Google Scholar 

  15. O'Toole, G.A. & Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449–461 (1998).

    Article  CAS  Google Scholar 

  16. O'Toole, G.A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998).

    Article  CAS  Google Scholar 

  17. Ceri, H. et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities in bacterial biofilms. J. Clin. Microbiol. 37, 1771–1776 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Goeres, D.M. et al. Statistical assessment of a laboratory method for growing biofilms. Microbiology 151, 757–762 (2005).

    Article  CAS  Google Scholar 

  19. Harrison, J.J. et al. Copper and quaternary ammonium cations exert synergistic bactericidal and anti-biofilm activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 52, 2870–2881 (2008).

    Article  CAS  Google Scholar 

  20. Harrison, J.J. et al. Metal resistance in Candida biofilms. FEMS Microbiol. Ecol. 55, 479–491 (2006).

    Article  CAS  Google Scholar 

  21. Harrison, J.J., Turner, R.J. & Ceri, H. A subpopulation of Candida albicans and Candida tropicalis biofilm cells are highly tolerant to chelating agents. FEMS Microbiol. Lett. 272, 172–181 (2007).

    Article  CAS  Google Scholar 

  22. Periasamy, S., Chalmers, N.I., Du-Thumm, L. & Kolenbrander, P.E. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34. Appl. Environ. Microbiol. 75, 3250–3257 (2009).

    Article  CAS  Google Scholar 

  23. Periasamy, S. & Kolenbrander, P.E. Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fuseobacterium nucleatum and Veillonella species in saliva. Infect. Immun. 77, 3542–3551 (2009).

    Article  CAS  Google Scholar 

  24. Cunliffe, M. & Kertesz, M.A. Autecological properties of soil sphingomonads involved in the degradation of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 72, 1083–1089 (2006).

    Article  CAS  Google Scholar 

  25. Harrison, J.J. et al. The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol. Proced. Online 8, 194–215 (2006).

    Article  CAS  Google Scholar 

  26. Gualdi, L. et al. Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154, 2017–2024 (2008).

    Article  CAS  Google Scholar 

  27. Spoering, A. & Lewis, K. Biofilm and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751 (2001).

    Article  CAS  Google Scholar 

  28. Vanderlinde, E.M. et al. Rhizobium leguminosarum biovar viciae 3841, deficient in 27-hydroxyoctacosanoate-modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. Microbiology 155, 2055–3069 (2009).

    Article  Google Scholar 

  29. Goeres, D.M. et al. A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nat. Protoc. 4, 783–788 (2009).

    Article  CAS  Google Scholar 

  30. Belley, A. et al. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus in vitro. Antimicrob. Agents Chemother. 53, 918–925 (2009).

    Article  CAS  Google Scholar 

  31. Toutain-Kidd, C.M. et al. Polysorbate 80 inhibition of Pseudomonas aeruginsa biofilm formation and its cleavage by the secreted lipase LipA. Antimicrob. Agents Chemother. 53, 136–145 (2009).

    Article  CAS  Google Scholar 

  32. Ali, L., Khambaty, F. & Diachenko, G. Investigating the suitability of the Calgary Biofilm Device for assessing the antimicrobial efficacy of new agents. Bioresour. Technol. 97, 1887–1893 (2006).

    Article  CAS  Google Scholar 

  33. Russel, A.D., Ahonkhai, I. & Rogers, D.T. Microbiological applications of the inactivation of antibiotics and other antimicrobial agents. J. Appl. Bacteriol. 46, 207–245 (1979).

    Article  Google Scholar 

  34. Buckingham-Meyer, K., Goeres, D.M. & Hamilton, M.A. Comparative evaluation of biofilm disinfectant efficacy tests. J. Microbiol. Methods 70, 236–244 (2007).

    Article  CAS  Google Scholar 

  35. ASTM International. E-1054-02: Standard Test Method for Evaluation of Inactivators of Antimicrobial Agents in Annual Book of ASTM Standards Vol. 11.05 (ASTM International, West Conshohocken, PA, 2004).

  36. Harrison, J.J. et al. Chromosomal antioxidant genes have metal ion-specifc roles as determinants of bacterial metal tolerance. Environ. Microbiol. 11, 2491–2509 (2009).

    Article  CAS  Google Scholar 

  37. Fothergill, A.W. & McGough, D.A. In vitro antifungal susceptibility testing of yeasts. in Clinical Microbiology Procedures Handbook Vol. 1 (eds. Isenberg, H.D. & Hindler, J.) 5.15.11–15.15.16 (ASM Press, Washington, 1995).

  38. García-Castillo, M. et al. Differences in biofilm development and antibiotic susceptibility among Streptococcus pneumoniae isolates from cystic fibrosis samples and blood cultures. J. Antimicrob. Chemother. 59, 301–304 (2007).

    Article  Google Scholar 

  39. Peeters, E., Nelis, H.J. & Coenye, T. In vitro activity of ceftazidime, ciprofloxacin, meropenem, minocycline, tobramycin and trimethoprim/sulfamethoxazole against planktonic and sessile Burkholderia cepacia complex bacteria. J. Antimicrob. Chemother. 64, 801–809 (2009).

    Article  CAS  Google Scholar 

  40. Wei, G.-X., Campagna, A.N. & Bobek, L.A. Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J. Antimicrob. Chemother. 57, 1100–1109 (2009).

    Article  Google Scholar 

  41. De Keersmaecker, S.C.J. et al. Chemical synthesis of (S)-4,5-dihydroxy-2,3-pentanedione, a bacterial signal molecule precursor, and validation of its activity in Salmonella typhimurium. J. Biol. Chem. 280, 19563–19568 (2005).

    Article  CAS  Google Scholar 

  42. Harrison, J.J. et al. Metal ions may supress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl. Environ. Microbiol. 73, 4940–4949 (2007).

    Article  CAS  Google Scholar 

  43. Parahitiyawa, N.B. et al. Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device. APMIS 114, 298–306 (2006).

    Article  CAS  Google Scholar 

  44. Moskowitz, S.M., Foster, J.M., Emerson, J. & Burns, J.L. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J. Clin. Microbiol. 42, 1915–1922 (2004).

    Article  CAS  Google Scholar 

  45. Harrison, J.J. et al. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob. Agents Chemother. 53, 2253–2258 (2009).

    Article  CAS  Google Scholar 

  46. Brooun, A., Liu, S. & Lewis, K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 44, 640–646 (2000).

    Article  CAS  Google Scholar 

  47. Harrison, J.J. et al. Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151, 3181–3195 (2005).

    Article  CAS  Google Scholar 

  48. Harrison, J.J., Turner, R.J. & Ceri, H. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ. Microbiol. 7, 981–994 (2005).

    Article  CAS  Google Scholar 

  49. Harrison, J.J., Turner, R.J. & Ceri, H. High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiol. 5, 53 (2005).

    Article  Google Scholar 

  50. Teitzel, G.M. & Parsek, M.R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69, 2313–2320 (2003).

    Article  CAS  Google Scholar 

  51. O'Neil, M.J., Heckelman, P.E., Koch, C.B. & Roman, K.J. eds The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals 14 ed. (Merck Research Laboratories, Whitehouse Station, NJ, USA, 2006).

  52. Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48 (Suppl. 1): 5–16 (2001).

    Article  CAS  Google Scholar 

  53. McFarland, J. An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J. Am. Med. Assoc. 14, 1176–1178 (1907).

    Article  Google Scholar 

  54. Periasamy, S. & Kolenbrander, P.E. Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early and late colonizers of enamel. J. Bacteriol. 191, 6804–6811 (2009).

    Article  CAS  Google Scholar 

  55. Tomlin, K.L., Coll, O.P. & Ceri, H. Interspecies biofilms of Pseudomonas aeruginosa and Burkholderia cepacia. Can. J. Microbiol. 47, 949–954 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.J.H. is supported by a post-doctoral fellowship from the Natural Sciences and Engineering Research Council (NSERC) of Canada. R.J.T. and H.C. are supported by NSERC discovery grants. The authors would like to thank W.D. Wade and S. Ravaioli for providing data on the calibration of the rocking table.

Author information

Authors and Affiliations

Authors

Contributions

J.J.H. wrote the manuscript. All of the authors contributed extensively to protocol development and to revisions.

Corresponding authors

Correspondence to Joe J Harrison or Howard Ceri.

Ethics declarations

Competing interests

The authors declare competing financial interests. H.C. and M.E.O. are shareholders in Innovotech Inc. and N.D.A. and M.E.O. serve as the Laboratory Manager and Research Director for this company, respectively.

Supplementary information

Supplementary Table 1

Batch culture parameters and apparatus configurations for microbial attachment and/or biofilm growth on peg lids. (DOC 556 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, J., Stremick, C., Turner, R. et al. Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc 5, 1236–1254 (2010). https://doi.org/10.1038/nprot.2010.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.71

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology