Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Global metabolic profiling procedures for urine using UPLC–MS

Abstract

The production of 'global' metabolite profiles involves measuring low molecular-weight metabolites (<1 kDa) in complex biofluids/tissues to study perturbations in response to physiological challenges, toxic insults or disease processes. Information-rich analytical platforms, such as mass spectrometry (MS), are needed. Here we describe the application of ultra-performance liquid chromatography–MS (UPLC–MS) to urinary metabolite profiling, including sample preparation, stability/storage and the selection of chromatographic conditions that balance metabolome coverage, chromatographic resolution and throughput. We discuss quality control and metabolite identification, as well as provide details of multivariate data analysis approaches for analyzing such MS data. Using this protocol, the analysis of a sample set in 96-well plate format, would take ca. 30 h, including 1 h for system setup, 1–2 h for sample preparation, 24 h for UPLC–MS analysis and 1–2 h for initial data processing. The use of UPLC–MS for metabolic profiling in this way is not faster than the conventional HPLC-based methods but, because of improved chromatographic performance, provides superior metabolome coverage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow diagram of a typical MS-based metabolite profiling workflow.
Figure 2: A BPI UPLC–MS chromatogram of a urine sample run in positive ESI mode (top) and negative ESI mode (below).
Figure 3: MSE data from a urine sample.
Figure 4
Figure 5: A two-dimensional PCA scores plot (PC1 versus PC2) of human urine samples (blue) and QCs (red) obtained by UPLC–MS in positive ESI.
Figure 6: PCA time series plot showing the first PC component (t[1] versus samples in run order).

Similar content being viewed by others

References

  1. Nicholson, J.K., Lindon, J.C. & Holmes, E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181–1189 (1999).

    Article  CAS  Google Scholar 

  2. Nicholson, J.K., Connelly, J., Lindon, J.C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).

    Article  CAS  Google Scholar 

  3. Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant. Mol. Biol. 48, 155–171 (2002).

    Article  CAS  Google Scholar 

  4. Nicholson, J.K. & Lindon, J.C. Systems biology: metabonomics. Nature 455, 1054–1056 (2008).

    Article  CAS  Google Scholar 

  5. Wishart, D.S. Applications of metabolomics in drug discovery and development. Drugs R. D. 9, 307–322 (2008).

    Article  CAS  Google Scholar 

  6. Clarke, C.J. & Haselden, J.N. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol. Pathol. 36, 140–147 (2008).

    Article  CAS  Google Scholar 

  7. Bollard, M.E. et al. Comparative metabonomics of differential hydrazine toxicity in the rat and mouse. Toxicol. Appl. Pharmacol. 204, 135–151 (2005).

    Article  CAS  Google Scholar 

  8. Lindon, J.C., Holmes, E. & Nicholson, J.K. Metabonomics in pharmaceutical R&D. FEBS J. 274, 1140–1151 (2007).

    Article  CAS  Google Scholar 

  9. Coen, M., Holmes, E., Lindon, J.C. & Nicholson, J.K. NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem. Res. Toxicol. 21, 9–27 (2008).

    Article  CAS  Google Scholar 

  10. Hinkelbein, J. et al. Alterations in cerebral metabolomics and proteomic expression during sepsis. Curr. Neurovasc. Res. 4, 280–288 (2007).

    Article  CAS  Google Scholar 

  11. Bertini, I. et al. The metabonomic signature of celiac disease. J. Proteome. Res. 8, 170–177 (2009).

    Article  CAS  Google Scholar 

  12. Gowda, G.A. et al. Metabolomics-based methods for early disease diagnostics. Expert. Rev. Mol. Diagn. 8, 617–633 (2008).

    Article  CAS  Google Scholar 

  13. Lenz, E.M. et al. Metabonomics, dietary influences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. J. Pharm. Biomed. Anal. 36, 841–849 (2004).

    Article  CAS  Google Scholar 

  14. Gieger, C. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 4, e1000282 (2008).

    Article  Google Scholar 

  15. Holmes, E. et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396–400 (2008).

    Article  CAS  Google Scholar 

  16. Beckonert, O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692–2703 (2007).

    Article  CAS  Google Scholar 

  17. Gika, H.G., Theodoridis, G. & Wilson, I.D. Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine. Sample stability under different handling and storage conditions for metabonomics studies. J. Chromatogr. A 1189, 314–322 (2008).

    Article  CAS  Google Scholar 

  18. Want, E.J. et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem. 78, 743–752 (2006).

    Article  CAS  Google Scholar 

  19. Michopoulos, F., Lai, L., Gika, H., Theodoridis, G. & Wilson, I.D. UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. J. Proteome. Res. 8, 2114–2121 (2009).

    Article  CAS  Google Scholar 

  20. Zelena, E. et al. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal. Chem. 81, 1357–1364 (2009).

    Article  CAS  Google Scholar 

  21. Barton, R.H., Nicholson, J.K., Elliott, P. & Holmes, E. High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study. Int. J. Epidemiol. 37 (Suppl 1): i31–i40 (2008).

    Article  Google Scholar 

  22. Lauridsen, M., Hansen, S.H., Jaroszewski, J.W. & Cornett, C. Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage. Anal. Chem. 79, 1181–1186 (2007).

    Article  CAS  Google Scholar 

  23. Matuszewski, B.K., Constanzer, M.L. & Chavez-Eng, C.M. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: a method for determination of finasteride in human plasma at picogram per milliliter concentrations. Anal. Chem. 70, 882–889 (1998).

    Article  CAS  Google Scholar 

  24. Gangl, E.T., Annan, M.M., Spooner, N. & Vouros, P. Reduction of signal suppression effects in ESI-MS using a nanosplitting device. Anal. Chem. 73, 5635–5644 (2001).

    Article  CAS  Google Scholar 

  25. Gustavsson, S.A., Samskog, J., Markides, K.E. & Långström, B. Studies of signal suppression in liquid chromatography-electrospray ionization mass spectrometry using volatile ion-pairing reagents. J. Chromatogr. A 937, 41–47 (2001).

    Article  CAS  Google Scholar 

  26. Jellum, E. Profiling of human body fluids in healthy and diseased states using gas chromatography and mass spectrometry, with special reference to organic acids. J. Chromatogr. 143, 427–462 (1977).

    Article  CAS  Google Scholar 

  27. Taylor, N.F. Urinary steroid profiling. Methods Mol. Biol. 324, 159–175 (2006).

    CAS  PubMed  Google Scholar 

  28. Halket, J.M et al. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Botany 56, 219–243 (2005).

    Article  CAS  Google Scholar 

  29. New, L.S. & Chan, E.C. Evaluation of BEH C18, BEH HILIC, and HSS T3 (C18) column chemistries for the UPLC-MS-MS analysis of glutathione, glutathione disulfide, and ophthalmic acid in mouse liver and human plasma. J. Chromatogr. Sci. 46, 209–214 (2008).

    Article  CAS  Google Scholar 

  30. Wilson, I.D. et al. High resolution 'ultra performance' liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome. Res. 4, 591–598 (2005).

    Article  CAS  Google Scholar 

  31. Tolstikov, V.V. & Fiehn, O. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem. 301, 298–307 (2002).

    Article  CAS  Google Scholar 

  32. Idborg, H., Zamani, L., Schuppe-Koistinen, I. & Jacobsson, S. Metabolic fingerprinting of rat urine by LC/MS Part 1. Analysis by hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B 828, 9–13 (2005).

    Article  CAS  Google Scholar 

  33. Cubbon, S., Bradbury, T., Wilson, J. & Thomas-Oates, J. Hydrophilic interaction chromatography for mass spectrometric metabonomic studies of urine. Anal. Chem. 79, 8911–8918 (2007).

    Article  CAS  Google Scholar 

  34. Gika, H.G., Theodoridis, G.A. & Wilson, I.D. Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabonomic analysis of Zucker rat urine. J. Sep. Sci. 31, 1598–1608 (2008).

    Article  CAS  Google Scholar 

  35. Plumb, R.S. et al. A rapid screening approach to metabonomics using UPLC and oa-TOF mass spectrometry: application to age, gender and diurnal variation in normal/Zucker obese rats and black, white and nude mice. Analyst 130, 844–849 (2005).

    Article  CAS  Google Scholar 

  36. Kind, T., Tolstikov, V., Fiehn, O. & Weiss, R.H. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal. Biochem. 363, 185–195 (2007).

    Article  CAS  Google Scholar 

  37. Guy, P.A., Tavazzi, I., Bruce, S.J., Ramadan, Z. & Kochhar, S. Global metabolic profiling analysis on human urine by UPLC-TOFMS: issues and method validation in nutritional metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871, 253–260 (2008).

    Article  CAS  Google Scholar 

  38. Plumb, R.S. et al. Generation of ultrahigh peak capacity LC separations via elevated temperatures and high linear mobile-phase velocities. Anal. Chem. 78, 7278–7283 (2006).

    Article  CAS  Google Scholar 

  39. Gika, H.G., Theodoridis, G., Extance, J., Edge, A.M. & Wilson, I.D. High temperature-ultraperformance liquid chromatography–mass spectrometry for the metabonomic analysis of Zucker rat urine. J. Chrom. B. 871, 279–287 (2008).

    Article  CAS  Google Scholar 

  40. Lenz, E.M., Bright, J., Knight, R., Wilson, I.D. & Major, H. A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC-TOF/MS: time dependant changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity. Analyst 129, 535–541 (2004).

    Article  CAS  Google Scholar 

  41. Nordström, A., Want, E., Northen, T., Lehtiö, J. & Siuzdak, G. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal. Chem. 80, 421–429 (2008).

    Article  Google Scholar 

  42. Leandro, C.C., Hancock, P., Fussell, R.J. & Keely, B.J. Ultra-performance liquid chromatography for the determination of pesticide residues in foods by tandem quadrupole mass spectrometry with polarity switching. J. Chromatogr. A 1144, 161–169 (2007).

    Article  CAS  Google Scholar 

  43. Want, E.J., Nordström, A., Morita, H. & Siuzdak, G. From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J. Proteome. Res. 6, 459–468 (2007).

    Article  CAS  Google Scholar 

  44. Plumb, R.S. et al. UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun. Mass Spectrom. 20, 1989–1994 (2006).

    Article  CAS  Google Scholar 

  45. Bateman, K.P. et al. MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun. Mass Spectrom. 21, 1485–1496 (2007).

    Article  CAS  Google Scholar 

  46. Crockford, D.J. 1H NMR and UPLC-MS(E) statistical heterospectroscopy: characterization of drug metabolites (xenometabolome) in epidemiological studies. Anal. Chem. 80, 6835–6844 (2008).

    Article  CAS  Google Scholar 

  47. Perry, R.H., Cooks, R.G. & Noll, R.J. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom. Rev. 27, 661–699 (2008).

    Article  CAS  Google Scholar 

  48. Gika, H.G., Theodoridis, G.A., Wingate, J.E. & Wilson, I.D. Within day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. J. Proteome. Res. 6, 3291–3303 (2007).

    Article  CAS  Google Scholar 

  49. Gika, H.G., Macpherson, E., Theodoridis, G. & Wilson, I.D. Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples. J. Chromatogr. B 871, 299–305 (2008).

    Article  CAS  Google Scholar 

  50. Baker, J.M. et al. A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol. J. 4, 381–392 (2006).

    Article  CAS  Google Scholar 

  51. Sangster, T., Major, H., Plumb, R., Wilson, A.J. & Wilson, I.D. A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 131, 1075–1078 (2006).

    Article  CAS  Google Scholar 

  52. FDA Guidance for Industry, Bioanalytical method Validation, Food and Drug Administration, Centre for Drug Evaluation and Research (CDER), May 2001.

  53. Viswanathan, C.T. et al. Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. Pharm. Res. 24, 1962–1973 (2007).

    Article  CAS  Google Scholar 

  54. Pham-Tuan, H., Kaskavelis, L., Daykin, C.A. & Janssen, H. Method development in high-performance liquid chromatography for high-throughput profiling and metabonomic studies of biofluid samples. J. Chromatogr. B 789, 283–301 (2003).

    Article  CAS  Google Scholar 

  55. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  Google Scholar 

  56. Katajamaa, M., Miettinen, J. & Oresic, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636 (2006).

    Article  CAS  Google Scholar 

  57. Duran, A.L., Yang, J., Wang, L.J. & Sumner, L.W. Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19, 2283–2293 (2003).

    Article  CAS  Google Scholar 

  58. Baran, R. et al. MathDAMP: a package for differential analysis of metabolite profiles. BMC Bioinformatics 7, 530–538 (2006).

    Article  Google Scholar 

  59. Broeckling, C.D., Reddy, I.R., Duran, A.L., Zhao, X.C. & Sumner, L.W. MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal. Chem. 78, 4334–4341 (2006).

    Article  CAS  Google Scholar 

  60. Katajamaa, M. & Oresic, M.J. Data processing for mass spectrometry-based metabolomics. Chromatogr. A 1158, 318–328 (2007).

    Article  CAS  Google Scholar 

  61. Sumner, L.W., Urbanczyk-Wochniak, E. & Broeckling, C.D. Metabolomics data analysis, visualization, and integration. Methods Mol. Biol. 406, 409–436 (2007).

    CAS  PubMed  Google Scholar 

  62. Ruan, Q. et al. An integrated method for metabolite detection and identification using a linear ion trap/Orbitrap mass spectrometer and multiple data processing techniques: application to indinavir metabolite detection. J. Mass. Spectrom. 43, 251–261 (2008).

    Article  CAS  Google Scholar 

  63. Zhang, N.R. et al. Quantitation of small molecules using high-resolution accurate mass spectrometers—a different approach for analysis of biological samples. Rapid Commun. Mass Spectrom. 23, 1085–1094 (2009).

    Article  CAS  Google Scholar 

  64. Ohta, D., Shibata, D. & Kanaya, S. Metabolic profiling using Fourier-transform ion-cyclotron-resonance mass spectrometry. Anal. Bioanal. Chem. 389, 1469–1475 (2007).

    Article  CAS  Google Scholar 

  65. Crockford, D.J. et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal. Chem. 78, 363–371 (2006).

    Article  CAS  Google Scholar 

  66. Wishart, D.S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35 (Database issue): D521–D526 (2007).

    Article  CAS  Google Scholar 

  67. Wishart, D.S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37 (Database issue): D603–D610 (2009).

    Article  CAS  Google Scholar 

  68. Smith, C.A. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  Google Scholar 

  69. Draper, J. et al. Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules'. BMC Bioinformatics 10, 227 (2009).

    Article  Google Scholar 

  70. Wilson, I.D. & Nicholson, J.K. Solid-phase extraction chromatography and nuclear magnetic resonance spectroscopy for the identification and isolation of drug metabolites in urine. Anal. Chem. 59, 2830–2832 (1987).

    Article  CAS  Google Scholar 

  71. Baranyi, M., Milusheva, E., Vizi, E.S. & Sperlágh, B. Chromatographic analysis of dopamine metabolism in a Parkinsonian model. J. Chromatogr. A 1120, 13–20 (2006).

    Article  CAS  Google Scholar 

  72. Gavaghan, C.L. et al. Directly coupled high-performance liquid chromatography and nuclear magnetic resonance spectroscopy with chemometric studies on metabolic variation in Sprague-Dawley rats. Anal. Biochem. 291, 245–252 (2001).

    Article  CAS  Google Scholar 

  73. Spraul, M., Hofmann, M., Dvortsack, P., Nicholson, J.K. & Wilson, I.D. High-performance liquid chromatography coupled to high-field proton nuclear magnetic resonance spectroscopy: application to the urinary metabolites of ibuprofen. Anal. Chem. 65, 327–330 (1993).

    Article  CAS  Google Scholar 

  74. Dear, G.J. et al. Mass directed peak selection, an efficient method of drug metabolite identification using directly coupled liquid chromatography-mass spectrometry-nuclear magnetic resonance spectroscopy. J. Chromatogr. B Biomed. Sci. Appl. 748, 281–293 (2000).

    Article  CAS  Google Scholar 

  75. Lin, Y., Schiavo, S., Orjala, J., Vouros, P. & Kautz, R. Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal. Chem. 80, 8045–8054 (2008).

    Article  CAS  Google Scholar 

  76. Shockcor, J.P. et al. Combined HPLC, NMR spectroscopy, and Ion-trap mass spectrometry with application to the detection and characterisation of xenobiotic and endogenous metabolites in human urine. Anal. Chem. 68, 4431–4435 (1996).

    Article  CAS  Google Scholar 

  77. Nicholls, A.W, Wilson, I.D., Godejohann, M., Nicholson, J.K. & Shockcor, J.P. Identification of phenacetin metabolites in human urine after administration of phenacetin-C2H3: measurement of futile metabolic deacetylation via HPLC/MS-SPE-NMR and HPLC-ToF MS. Xenobiotica 36, 615–629 (2006).

    Article  CAS  Google Scholar 

  78. Spraul, M. et al. Advancing NMR sensitivity for LC-NMR-MS using a cryoflow probe: application to the analysis of acetaminophen metabolites in urine. Anal. Chem. 75, 1536–1541 (2003).

    Article  CAS  Google Scholar 

  79. Shockcor, J.P., Unger, S.E., Savina, P., Nicholson, J.K. & Lindon, J.C. Application of directly coupled LC-NMR-MS to the structural elucidation of metabolites of the HIV-1 reverse-transcriptase inhibitor BW935U83. J. Chromatogr. B Biomed. Sci. Appl. 748, 269–279 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author E. Want acknowledges funding support from Waters Corporation. H. Gika acknowledges support from the European Committee through a European Reintegration Grant (ERG 202132).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Elizabeth J Want.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Want, E., Wilson, I., Gika, H. et al. Global metabolic profiling procedures for urine using UPLC–MS. Nat Protoc 5, 1005–1018 (2010). https://doi.org/10.1038/nprot.2010.50

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.50

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing