Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues

Abstract

Metabolic profiling, metabolomic and metabonomic studies require robust study protocols for any large-scale comparisons and evaluations. Detailed methods for solution-state NMR spectroscopy have been summarized in an earlier protocol. This protocol details the analysis of intact tissue samples by means of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy and we provide a detailed description of sample collection, preparation and analysis. Described here are 1H NMR spectroscopic techniques such as the standard one-dimensional, relaxation-edited, diffusion-edited and two-dimensional J-resolved pulse experiments, as well as one-dimensional 31P NMR spectroscopy. These are used to monitor different groups of metabolites, e.g., sugars, amino acids and osmolytes as well as larger molecules such as lipids, non-invasively. Through the use of NMR-based diffusion coefficient and relaxation times measurements, information on molecular compartmentation and mobility can be gleaned. The NMR methods are often combined with statistical analysis for further metabonomics analysis and biomarker identification. The standard acquisition time per sample is 8–10 min for a simple one-dimensional 1H NMR spectrum, giving access to metabolite information while retaining tissue integrity and hence allowing direct comparison with histopathology and MRI/MRS findings or the evaluation together with biofluid metabolic-profiling data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Details of an MAS NMR probe: the rotor containing the sample is positioned in the hole of the stator block at 54.7° in the NMR probe head.
Figure 2: Standard pulse 600 MHz 1H NMR spectra acquired from control mouse liver tissue (reproduced with permission from ref. 74):
Figure 3: Example of an 800 MHz 1H–1H TOCSY MAS NMR spectrum of rat renal cortex tissue from a bromoethanamine-treated rat (6 h post dose) for the assignment of 1H–1H connectivities of metabolite signals (reproduced with permission from ref. 30).
Figure 4: 1H–13C HMQC MAS NMR spectrum from normal rat renal outer cortex tissue, acquired at a spinning rate of 4,200 Hz for the assignment of 1H–13C connectivities of metabolite signals (reproduced with permission from ref. 29).
Figure 5: Two rotor designs allowing the positioning of either 65 μl or 12 μl of sample volume in a zirconia rotor.
Figure 6: HR-MAS NMR preparation tools and tissue sample.
Figure 7: Example of edited 600 MHz NMR spectra of the same control liver tissue sample (all were acquired with water peak suppression) (reproduced with permission from ref. 16).
Figure 8: Time-dependent changes in rat liver tissue after treatment with GalN.
Figure 9: 1H HR-MAS magnetic resonance spectra obtained from four different regions (labeled from a (mostly healthy) to d (highest degree of necrosis)) of a resected, untreated parietal glioblastoma multiforme (GBM).
Figure 10: Comparison of MRI, MRS and HR-MAS of prostate cancer.

Similar content being viewed by others

References

  1. Beckonert, O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Prot. 2, 2692–2703 (2007).

    Article  CAS  Google Scholar 

  2. Lindon, J.C. et al. Summary recommendations for standardization and reporting of metabolic analyses. Nat. Biotechnol. 23, 833–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Kinoshita, Y. & Yokota, A. Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed. 10, 2–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Gribbestad, I.S., Petersen, S.B., Fjoesne, H.E., Kvinnsland, S. & Krane, J. Spectroscopic characterisation of perchloric acid extracts from breast carcinomas and non-involved breast tissue. NMR Biomed. 7, 181–194 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Henke, J., Willker, W., Engelmann, J. & Leibfritz, D. Combined extraction techniques of tumour cells and lipid/phospholipids assignment by two dimensional NMR spectroscopy. Anticancer Res. 16, 1417–1428 (1996).

    CAS  PubMed  Google Scholar 

  6. Nadal, L. et al. Proton and phosphorus nuclear magnetic resonance spectroscopy of human brain tumor extracts with automatic data classification: a preliminary study. Cell. Mol. Biol. 43, 659–673 (1997).

    CAS  PubMed  Google Scholar 

  7. Folch, J., Lees, M. & Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  8. Chan, E.C. et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res. 8, 352–361 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Bobeldijk, I. et al. Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: compound class targeting in a metabolomics workflow. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871, 306–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y. et al. Integrated analysis of serum and liver metabonome in liver transplanted rats by gas chromatography coupled with mass spectrometry. Anal. Chim. Acta. 633, 65–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Tang, Z., Martin, M.V. & Guengerich, F.P. Elucidation of functions of human cytochrome P450 enzymes: identification of endogenous substrates in tissue extracts using metabolomic and isotopic labeling approaches. Anal. Chem. 81, 3071–3078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rubaek Danielsen, E. & Ross, B. Magnetic resonance spectroscopy diagnosis of neurological diseases 1st ed. (CRC Press, 1999).

  13. Tugnoli, V. et al. Ex vivo HR-MAS MRS of human meningiomas: a comparison with in vivo1H MR spectra. Internat. J. Mol. Med. 18, 859–869 (2006).

    CAS  Google Scholar 

  14. Kurhanewicz, J., Swanson, M.G., Nelson, S.J. & Vigneron, D.B. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J. Mag. Reson. Imaging 16, 451–463 (2002).

    Article  Google Scholar 

  15. Swanson, M.G. et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Mag. Res. Med. 50, 944–954 (2003).

    Article  CAS  Google Scholar 

  16. Wang, Y. et al. Spectral editing and pattern recognition methods applied to high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues. Anal. Biochem. 323, 26–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Cloarec, O. et al. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal. Chem. 77, 1282–1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Cloarec, O. et al. Virtual chromatographic resolution enhancement in cryoflow LC-NMR experiments via statistical total correlation spectroscopy. Anal. Chem. 79, 3304–3311 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Coen, M. et al. Heteronuclear 1H-31P statistical total correlation NMR spectroscopy of intact liver for metabolic biomarker assignment: application to galactosamine-induced hepatotoxicity. Anal. Chem. 79, 8956–8966 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Lindon, J.C., Beckonert, O.P., Holmes, E. & Nicholson, J.K. High-resolution magic angle spinning NMR spectroscopy: application to biomedical studies. Prog. Nuc. Magn. Reson. Spectr. 55, 79–100 (2009).

    Article  CAS  Google Scholar 

  21. Andrew, E.R., Bradbury, A. & Eades, R.G. Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183, 1802–1803 (1959).

    Article  CAS  Google Scholar 

  22. Lowe, I.J. Free induction decays of rotating solids. Phys. Rev. Lett. 2, 285–287 (1959).

    Article  CAS  Google Scholar 

  23. Taylor, J.L. et al. High-resolution magic angle spinning proton NMR analysis of human prostate tissue with slow spinning rates. Magn. Reson. Med. 50, 627–632 (2003).

    Article  PubMed  Google Scholar 

  24. Hu, J.Z. & Wind, R.A. The evaluation of different MAS techniques at low spinning rates in aqueous samples and in the presence of magnetic susceptibility gradients. J. Magn. Reson. 159, 92–100 (2002).

    Article  CAS  Google Scholar 

  25. Hu, J.Z. & Wind, R.A. Sensitivity-enhanced phase-corrected ultra-slow magic angle turning using multiple-echo data acquisition. J. Magn. Reson. 163, 149–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Maas, W.E., Laukien, F.H. & Cory, D.G. Gradient, high resolution, magic angle sample spinning NMR. J. Am. Chem. Soc. 118, 13085–13086 (1996).

    Article  CAS  Google Scholar 

  27. Maas, W.E., Bielecki, A., Ziliox, M., Laukien, F.H. & Cory, D.G. Magnetic field gradients in solid-state magic angle spinning NMR. J. Magn. Reson. 141, 29–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y. et al. Magic angle spinning NMR and 1H-31P heteronuclear statistical total correlation spectroscopy of intact human gut biopsies. Anal. Chem. 80, 1058–1066 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Garrod, S. et al. High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn. Reson. Med. 41, 1108–1118 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Garrod, S. et al. High-resolution 1H NMR and magic angle spinning NMR spectroscopic investigation of the biochemical effects of 2-bromoethanamine in intact renal and hepatic tissue. Magn. Reson. Med. 45, 781–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Cornelissen, G., van Noort, P.C.M., Nachtegaal, G. & Kentgens, A.P.M. A solid-state fluorine-NMR study on hexafluorobenzene sorbed by sediments, polymers, and active carbon. Environ. Sci. Technol. 34, 645–649 (2000).

    Article  CAS  Google Scholar 

  32. Denkenberger, K.A., Bowers, R.A., Jones, A.D. & Mueller, K.T. NMR studies of the thermal degradation of a perfluoropolyether on the surfaces of γ-Alumina and Kaolinite. Langmuir 23, 8855–8860 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Bollard, M.E. et al. High-resolution 1H and 1H-13C magic angle spinning NMR spectroscopy of rat liver. Magn. Reson. Med. 44, 201–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Griffin, J.L. et al. The biochemical profile of rat testicular tissue as measured by magic angle spinning 1H NMR spectroscopy. FEBS Lett. 486, 225–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Y. et al. Topographical variation in metabolic signatures of human gastrointestinal biopsies revealed by high-resolution magic-angle-spinning 1H NMR spectroscopy. J. Proteome. Res. 6, 3944–3951 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Waters, N.J. et al. NMR and pattern recognition studies on the time-related metabolic effects of α-naphthylisothiocyanate on liver, urine, and plasma in the rat: an integrative metabonomic approach. Chem. Res. Tox. 14, 1401–1412 (2001).

    Article  CAS  Google Scholar 

  37. Waters, N.J., Waterfield, C.J., Farrant, R.D., Holmes, E. & Nicholson, J.K. Integrated metabonomic analysis of bromobenzene-induced hepatotoxicity: novel induction of 5-oxoprolinosis. J. Proteome Res. 5, 1448–1459 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Yap, I.K.S. et al. An integrated metabonomic approach to describe temporal metabolic disregulation induced in the rat by the model hepatotoxin allyl formate. J. Proteome Res. 5, 2675–2684 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Skordi, E. et al. Analysis of time-related metabolic fluctuations induced by ethionine in the rat. J. Proteome Res. 6, 4572–4581 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Bollard, M.E. et al. NMR-based metabolic profiling identifies biomarkers of liver regeneration following partial hepatectomy in the rat. J. Proteome. Res. 9, 59–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Waters, N.J., Holmes, E., Waterfield, C.J., Farrant, R.D. & Nicholson, J.K. NMR and pattern recognition studies on liver extracts and intact livers from rats treated with α-napthylisothiocyanate. Biochem. Pharmacol. 64, 67–77 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Bollard, M.E. et al. Metabolic profiling of the effects of D-galactosamine in liver spheroids using 1H NMR and MAS NMR spectroscopy. Chem. Res. Tox. 15, 1351–1359 (2002).

    Article  CAS  Google Scholar 

  43. Waters, N.J., Waterfield, C.J., Farrant, R.D., Holmes, E. & Nicholson, J.K. Metabonomic deconvolution of embedded toxicity: application to thioacetamide hepato- and nephrotoxicity. Chem. Res. Tox. 18, 639–654 (2005).

    Article  CAS  Google Scholar 

  44. Cheng, L.L. et al. Enhanced resolution of proton NMR spectra of malignant lymph nodes using magic-angle spinning. Magn. Reson. Med. 36, 653–658 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, L.L. et al. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 94, 6408–6413 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moka, D. et al. Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy. J. Pharm. Biomed. Anal. 17, 125–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Tate, A.R. et al. Distinction between normal and renal cell carcinoma kidney cortical biopsy samples using pattern recognition of 1H magic angle spinning (MAS) NMR spectra. NMR Biomed. 13, 64–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Cheng, L.L. et al. Quantification of microheterogeneity in glioblastoma multiforme with ex vivo high-resolution magic-angle spinning (HRMAS) proton magnetic resonance spectroscopy. Neuro Oncol. 2, 87–95 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barton, S.J. et al. Comparison of in vivo1H MRS of human brain tumours with 1H HR-MAS spectroscopy of intact biopsy samples in vitro. MAGMA 8, 121–128 (1999).

    CAS  PubMed  Google Scholar 

  50. Tzika, A. et al. Combination of high-resolution magic-angle spinning proton magnetic resonance spectroscopy and microscale genomics to type brain tumor biopsies. Internat. J. Mol. Med. 20, 199–208 (2007).

    CAS  Google Scholar 

  51. Swanson, M.G. et al. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Mag. Res. Med. 55, 1257–1264 (2006).

    Article  CAS  Google Scholar 

  52. Teichert, F. et al. Metabolic profiling of transgenic adenocarcinoma of mouse prostate (TRAMP) tissue by 1H-NMR analysis: evidence for unusual phospholipid metabolism. Prostate 68, 1035–1047 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Sitter, B. et al. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 19, 30–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Piotto, M. et al. Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1H magnetic resonance spectroscopy. Metabolomics 5, 292–301 (2009).

    Article  CAS  Google Scholar 

  55. Backshall, A. et al. Detection of metabolic alterations in non-tumor gastrointestinal tissue of the Apc Min/+ mouse by 1H MAS NMR spectroscopy. J. Proteome. Res. 8, 1423–1430 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Holmes, E., Tsang, T.M. & Tabrizi, S.J. The application of NMR-based metabonomics in neurological disorders. NeuroRx. 3, 358–372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsang, T.M., Griffin, J.L., Haselden, J., Fish, C. & Holmes, E. Metabolic characterization of distinct neuroanatomical regions in rats by magic angle spinning 1H nuclear magnetic resonance spectroscopy. Magn. Reson. Med. 53, 1018–1024 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Lan, M.J. et al. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol.Psych. 1–11 (2008).

  59. Cheng, L.L., Newell, K., Mallory, A.E., Hyman, B.T. & Gonzalez, R.G. Quantification of neurons in Alzheimer and control brains with ex vivo high resolution magic angle spinning proton magnetic resonance spectroscopy and stereology. Mag. Res. Imaging 20, 527–533 (2002).

    Article  Google Scholar 

  60. Duarte, I.F. et al. Metabolic assessment of human liver transplants from biopsy samples at the donor and recipient stages using high-resolution magic angle spinning 1H NMR spectroscopy. Anal. Chem. 77, 5570–5578 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Bollard, M.E. et al. A study of metabolic compartmentation in the rat heart and cardiac mitochondria using high-resolution magic angle spinning 1H NMR spectroscopy. FEBS Lett. 553, 73–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Griffin, J.L., Williams, H.J., Sang, E. & Nicholson, J.K. Abnormal lipid profile of dystrophic cardiac tissue as demonstrated by one- and two-dimensional magic-angle spinning 1H NMR spectroscopy. Magn. Reson. Med. 46, 249–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Griffin, J.L., Walker, L.A., Shore, R.F. & Nicholson, J.K. Metabolic profiling of chronic cadmium exposure in the rat. Chem. Res. Tox. 14, 1428–1434 (2001).

    Article  CAS  Google Scholar 

  64. Griffin, J.L., Walker, L., Shore, R.F. & Nicholson, J.K. High-resolution magic angle spinning 1H-NMR spectroscopy studies on the renal biochemistry in the bank vole (clethrionomys glareolus) and the effects of arsenic (As3+) toxicity. Xenobiotica 6, 377–385 (2001).

    Article  Google Scholar 

  65. Martin, F.-P.J. et al. Effects of probiotic lactobacillus paracasei treatment on the host gut tissue metabolic profiles probed via magic-angle-spinning NMR spectroscopy. J. Proteome Res. 6, 1471–1481 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Martin, F-P.J. et al. Transgenomic metabolic interactions in a mouse disease model: Interactions of Trichinella spiralis infection with dietary Lactobacillus paracasei supplementation. J. Prot. Res. 5, 2185–2193 (2006).

    Article  CAS  Google Scholar 

  67. Griffin, J.L., Bollard, M., Nicholson, J.K. & Bhakoo, K. Spectral profiles of cultured neuronal and glial cells derived from HRMAS 1H NMR spectroscopy. NMR Biomed. 15, 375–384 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Philp, D.J., Bubb, W.A. & Kuchel, P.W. Chemical shift and magnetic susceptibility contributions to the separation of intracellular and supernatant resonances in variable angle spinning NMR spectra of erythrocyte suspensions. Magn. Reson. Med. 51, 441–444 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, J.-H., Enloe, B.M., Xiao, Y., Cory, D.G. & Singer, S. Isotropic susceptibility shift under MAS: the origin of the split water resonances in 1H MAS NMR spectra of cell suspensions. Magn. Reson. Med. 50, 515–521 (2003).

    Article  PubMed  Google Scholar 

  70. Larkin, T.J., Bubb, W.A. & Kuchel, P.W. pH and cell volume effects on H2O and phosphoryl resonance splitting in rapid-spinning NMR of red cells. Biophys. J. 92, 1770–1776 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Gudlavalleti, S.K., Szymanski, C.M., Jarell, H.C. & Stephens, D.S. In vivo determination of Neisseria meningitides serogroup A capsular polysaccharide by whole cell high-resolution magic angle spinning NMR spectroscopy. Carbohyd. Res. 341, 557–562 (2006).

    Article  CAS  Google Scholar 

  72. Hanoulle, X. et al. Selective intracellular accumulation of the major metabolite issued from the activation of the prodrug ethionamide in mycobacteria. J. Antimicrob. Chemother. 58, 768–772 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Li, W. Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells. Analyst 131, 777–781 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Coen, M., Lenz, E.M., Nicholson, J.K., Wilson, I.D., Pognan, F. & Lindon, J.C. An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chem. Res. Tox. 16, 295–303 (2003).

    Article  CAS  Google Scholar 

  75. Hong, Y.-S. et al. Chemical shift calibration of 1H MAS NMR liver tissue spectra exemplified using a study of glycine protection of galactosamine toxicity. Magn. Reson. Chem. 47, S47–S53 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Nicholson, J.K., Foxall, P.J.D., Spraul, M., Farrant, R.D. & Lindon, J.C. 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal. Chem. 67, 793–811 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Ebbels, T.M.D. & Cavill, R. Bioinformatic methods in NMR-based metabolic profiling. Prog. Nuc. Magn. Reson. Spect. 55, 361–374 (2009).

    Article  CAS  Google Scholar 

  78. Farrant, R.D., Lindon, J.C. & Nicholson, J.K. Internal temperature calibration for 1H NMR spectroscopy studies of blood plasma and other biofluids. NMR Biomed. 7, 243–247 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Nicholls, A.W. & Mortishire-Smith, R.J. Temperature calibration of a high-resolution magic-angle spinning NMR probe for analysis of tissue samples. Magn. Reson. Chem. 39, 773–776 (2001).

    Article  CAS  Google Scholar 

  80. Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 78, 4281–4290 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Martínez-Bisbal, M.C. Determination of metabolite concentrations in human brain tumour biopsy samples using HR-MAS and ERETIC measurements. NMR Biomed. 22, 199–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Albers, M.J. Evaluation of the ERETIC method as an improved quantitative reference for 1H HR-MAS spectroscopy of prostate tissue. Magn. Reson. Med. 61, 525–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Waters, N.J. et al. High-resolution magic angle spinning 1H NMR spectroscopy of intact liver and kidney: optimization of sample preparation procedures and biochemical stability of tissue during spectral acquisition. Anal. Biochem. 282, 16–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Weybright, P., Millis, K., Campbell, N., Cory, D.G. & Singer, S. Gradient, high-resolution, magic angle spinning 1H nuclear magnetic resonance spectroscopy of intact cells. Magn. Reson. Med. 39, 337–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Wieruszeski, J.-M., Montagne, G., Chessari, G., Rousselot-Pailley, P. & Lippens, G. Rotor synchronisation of radiofrequency and gradient pulses in high-resolution magic angle spinning NMR. J. Magn. Reson. 152, 95–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Piotto, M. et al. Destruction of magnetization during TOCSY experiments performed under magic angle spinning: effect of radial B1 inhomogeneities. J. Magn. Reson. 149, 114–118 (2001).

    Article  CAS  Google Scholar 

  87. Hwang, T.L. & Shaka, A.J. Water suppression that works: excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. A112, 275–279 (1995).

    Article  Google Scholar 

  88. Aranibar, N., Ott, K-H., Roongta, V. & Mueller, L. Metabolomic analysis using optimised NMR and statistical methods. Anal. Biochem. 355, 62–70 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Sodickson, A. & Cory, D.G. Shimming a high-resolution MAS probe. J. Magn. Reson. 128, 87–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Piotto, M., Elbayed, K., Wieruszeski, J.-M. & Lippens, G. Practical aspects of shimming a high resolution magic angle spinning probe. J. Magn. Reson. 173, 84–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation time. Rev. Sci. Instrum. 20, 688–691 (1958).

    Article  Google Scholar 

  92. Aue, W.P., Karhan, J. & Ernst, R.R. Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy. J. Chem. Phys. 64, 4226–4227 (1976).

    Article  CAS  Google Scholar 

  93. Wu, D., Chen, A. & Johnson, C.S. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson. A 115, 260–264 (1995).

    Article  CAS  Google Scholar 

  94. Schleucher, J. et al. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J. Biomol. NMR 4, 301–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Perry, T.L., Hansen, S. & Gandham, S.S. Postmortem changes of amino compounds in human and rat brain. J. Neurochemistry 36, 406–412 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our academic and industrial collaborators for helpful discussions in the formulation of this paper. Y. Wang acknowledges the financial support from the Chinese Academy of Science (KJCX2-YW-W11) and MOST (2009CB118804). The MRC Integrative Toxicology Training Partnership (ITTP) is acknowledged for financial support to M. Coen.

Author information

Authors and Affiliations

Authors

Contributions

O.B. and J.C.L. drafted the initial manuscript and all of the authors contributed to its final form.

Corresponding author

Correspondence to Jeremy K Nicholson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckonert, O., Coen, M., Keun, H. et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5, 1019–1032 (2010). https://doi.org/10.1038/nprot.2010.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.45

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research