Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Conditioned place preference behavior in zebrafish

Abstract

This protocol describes conditioned place preference (CPP) in zebrafish following a single exposure to a substance. In the CPP paradigm, animals show a preference for an environment that has previously been associated with a substance (drug), thus indicating the positive-reinforcing qualities of that substance. The test tank consists of two visually distinct compartments separated by a central alley. The protocol involves three steps: the determination of initial preference, one conditioning session and the determination of final preference. This procedure is carried out in 2 d; other reported CPP protocols take up to 2 weeks. An increase in preference for the drug-associated compartment is observed after a single exposure. Establishment of this high-throughput protocol in zebrafish makes it possible to investigate the molecular and cellular basis of choice behavior, reward and associative learning. The protocol is also a tool for testing psychoactive compounds in the context of a vertebrate brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CPP apparatus.
Figure 2
Figure 3: Conditioned place preference behavior in adult zebrafish.

Similar content being viewed by others

References

  1. Tzschentke, T.M. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict. Biol. 12, 227–462 (2007).

    Article  CAS  Google Scholar 

  2. Grunwald, D.J. & Eisen, J.S. Headwaters of the zebrafish—emergence of a new model vertebrate. Nat. Rev. Genet. 3, 717–724 (2002).

    Article  CAS  Google Scholar 

  3. Fetcho, J.R. & Liu, K.S. Zebrafish as a model system for studying neuronal circuits and behavior. Ann. NY Acad. Sci. 860, 333–345 (1998).

    Article  CAS  Google Scholar 

  4. Guo, S. Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav. 3, 63–74 (2004).

    Article  CAS  Google Scholar 

  5. White, R.M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2, 183–189 (2008).

    Article  CAS  Google Scholar 

  6. Mattioli, R., Nelson, C.A., Huston, J.P. & Spieler, R.E. Conditioned place-preference analysis in the goldfish with the H1 histamine antagonist chlorpheniramine. Brain Res. Bull. 45, 41–44 (1998).

    Article  CAS  Google Scholar 

  7. Serra, E.L., Medalha, C.C. & Mattioli, R. Natural preference of zebrafish (Danio rerio) for a dark environment. Braz. J. Med. Biol. Res. 32, 1551–1553 (1999).

    Article  CAS  Google Scholar 

  8. Gerlai, R., Lahav, M., Guo, S. & Rosenthal, A. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. Behav. 67, 773–782 (2000).

    Article  CAS  Google Scholar 

  9. Maximino, C., Marques de Brito, T., Dias, C.A., Gouveia, A. Jr. & Morato, S. Scototaxis as anxiety-like behavior in fish. Nat. Protoc. 5, 209–216 (2010).

    Article  CAS  Google Scholar 

  10. Darland, T. & Dowling, J.E. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Natl. Acad. Sci. USA 98, 11691–11696 (2001).

    Article  CAS  Google Scholar 

  11. Ninkovic, J. et al. Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. J. Neurobiol. 66, 463–475 (2006).

    Article  CAS  Google Scholar 

  12. Braida, D. et al. Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology (Berl) 190, 441–448 (2007).

    Article  CAS  Google Scholar 

  13. Kily, L.J. et al. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J. Exp. Biol. 211, 1623–1634 (2008).

    Article  CAS  Google Scholar 

  14. Parmar, A., Parmar, M. & Brennan, C.H. Zebrafish conditioned place preference models of drug reinforcement and relapse to drug seeking. In Zebrafish Neurobehavioral Protocols. Vol. 51 (eds. Kalueff, A.V. & Cachat, J.M.) (Humana Press, 2011).

    Google Scholar 

  15. Lau, B., Bretaud, S., Huang, Y., Lin, E. & Guo, S. Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav. 5, 497–505 (2006).

    Article  CAS  Google Scholar 

  16. Mathur, P., Berberoglu, M.A. & Guo, S. Preference for ethanol in zebrafish following a single exposure. Behav. Brain Res. 217, 128–133 (2011).

    Article  CAS  Google Scholar 

  17. Bevins, R. The reference-dose place conditioning procedure yields a graded dose-effect function. Int. J. Comp. Psychol. 18, 101–111 (2005).

    Google Scholar 

  18. Dworkin, S. & Smith., J. Molecular mechanisms of drug reinforcement—current status. NIDA Res. Monogr. 90, 266–274 (1988).

  19. Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    Article  CAS  Google Scholar 

  20. Robinson, T.E. & Berridge, K.C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  Google Scholar 

  21. Ninkovic, J. & Bally-Cuif, L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39, 262–274 (2006).

    Article  CAS  Google Scholar 

  22. Cunningham, C.L., Ferree, N.K. & Howard, M.A. Apparatus bias and place conditioning with ethanol in mice. Psychopharmacology (Berl) 170, 409–422 (2003).

    Article  CAS  Google Scholar 

  23. Cunningham, C.L., Gremel, C.M. & Groblewski, P.A. Drug-induced conditioned place preference and aversion in mice. Nat. Protoc. 1, 1662–1670 (2006).

    Article  CAS  Google Scholar 

  24. Cunningham, C.L., Clemans, J.M. & Fidler, T.L. Injection timing determines whether intragastric ethanol produces conditioned place preference or aversion in mice. Pharmacol. Biochem. Behav. 72, 659–668 (2002).

    Article  CAS  Google Scholar 

  25. Cunningham, C.L. & Prather, L.K. Conditioning trial duration affects ethanol-induced conditioned place preference in mice. Anim. Learn. Behav. 20, 187–194 (1992).

    Article  Google Scholar 

  26. Li, L. & Dowling, J.E. A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. Proc. Natl. Acad. Sci. USA 94, 11645–11650 (1997).

    Article  CAS  Google Scholar 

  27. Dlugos, C.A. & Rabin, R.A. Ethanol effects on three strains of zebrafish: model system for genetic investigations. Pharmacol. Biochem. Behav. 74, 471–480 (2003).

    Article  CAS  Google Scholar 

  28. Naidong, W. et al. Simultaneous assay of morphine, morphine-3-glucuronide and morphine-6-glucuronide in human plasma using normal-phase liquid chromatography-tandem mass spectrometry with a silica column and an aqueous organic mobile phase. J. Chromatogr. B Biomed. Sci. Appl. 735, 255–269 (1999).

    Article  CAS  Google Scholar 

  29. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory use of Zebrafish (Danio rerio). 10.26 (University of Oregon Press, 2007).

    Google Scholar 

  30. Van Raaij, M.T.M., Pit, D.S.S., Balm, P.H., Steffens, A.B. & van der Thillart, G.E.E. Behavioral strategy and the physiological stress response in rainbow trout exposed to severe hypoxia. Horm. Behav. 30, 85–92 (1996).

    Article  CAS  Google Scholar 

  31. Lockwood, B., Bjerke, S., Kobayashi, K. & Guo, S. Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol. Biochem. Behav. 77, 647–654 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Department of Neurology, Alcohol and Addiction research program at the University of California San Francisco, the Sandler Family Foundation, the Packard Foundation and NIH AA016021.

Author information

Authors and Affiliations

Authors

Contributions

P.M., B.L. and S.G. designed experiments. P.M. and B.L. collected data and carried out data analyses. P.M. and S.G. wrote the paper.

Corresponding author

Correspondence to Su Guo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathur, P., Lau, B. & Guo, S. Conditioned place preference behavior in zebrafish. Nat Protoc 6, 338–345 (2011). https://doi.org/10.1038/nprot.2010.201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.201

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing