Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A practical guide to the synthesis of dinitroindolinyl-caged neurotransmitters

Abstract

This protocol describes a method for efficient chemical synthesis of dinitroindolinyl derivatives of glutamate and γ-aminobutyric acid. These caged neurotransmitters are currently the most chemically and photochemically efficient probes for two-photon photolysis in living brain slices. The protocol only requires basic organic synthesis equipment, and no silica gel column chromatography or NMR spectroscopy is needed at any stage. HPLC is used to purify the caged transmitters at the end of the syntheses. Thus, the synthesis of dinitroindolinyl-caged neurotransmitters is within the scope of a modestly equipped chemistry laboratory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Scheme for the synthesis of CDNI-Glu and -GABA.
Figure 3: Analytical HPLC of CDNI-Glu synthesis.
Figure 4: Preparative HPLC purification of CDNI-Glu synthesis.
Figure 5: Preparative HPLC purification of CDNI-GABA synthesis.

Similar content being viewed by others

References

  1. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Svoboda, K. & Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Tsien, R.Y. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 48, 5612–5626 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Ellis-Davies, G.C.R. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Grutzendler, J., Kasthuri, N. & Gan, W.B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Bhatt, D.H., Zhang, S. & Gan, W.B. Dendritic spine dynamics. Annu. Rev. Physiol. 71, 261–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Hirase, H., Qian, L., Bartho, P. & Buzsaki, G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 2, E96 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tian, G.F. et al. An astrocytic basis of epilepsy. Nat. Med. 11, 973–981 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nimmerjahn, A., Kirchhoff, F., Kerr, J.N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5, 805–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wallace, D.J. et al. Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat. Methods 5, 797–804 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Llewellyn, M.E., Barretto, R.P., Delp, S.L. & Schnitzer, M.J. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature 454, 784–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conchello, J.A. & Lichtman, J.W. Optical sectioning microscopy. Nat. Methods 2, 920–931 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Denk, W. Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc. Natl. Acad. Sci. USA 91, 6629–6633 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith, M.A., Ellis-Davies, G.C. & Magee, J.C. Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. J. Physiol. 548, 245–258 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Sobczyk, A., Scheuss, V. & Svoboda, K. NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines. J. Neurosci. 25, 6037–6046 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beique, J.C. et al. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc. Natl. Acad. Sci. USA 103, 19535–19540 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Asrican, B., Lisman, J. & Otmakhov, N. Synaptic strength of individual spines correlates with bound Ca2+-calmodulin-dependent kinase II. J. Neurosci. 27, 14007–14011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Y.P., Holbro, N. & Oertner, T.G. Optical induction of plasticity at single synapses reveals input-specific accumulation of alphaCaMKII. Proc. Natl. Acad. Sci. USA 105, 12039–12044 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Richardson, R.J., Blundon, J.A., Bayazitov, I.T. & Zakharenko, S.S. Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. J. Neurosci. 29, 6406–6417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ellis-Davies, G.C., Matsuzaki, M., Paukert, M., Kasai, H. & Bergles, D.E. 4-Carboxymethoxy-5,7-dinitroindolinyl-Glu: an improved caged glutamate for expeditious ultraviolet and two-photon photolysis in brain slices. J. Neurosci. 27, 6601–664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsuzaki, M., Hayama, T., Kasai, H. & Ellis-Davies, G.C.R. Two-photon uncaging of gamma-aminobutyric acid in intact brain tissue. Nat. Chem. Biol. 6, 255–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kantevari, S., Gordon, G.R.J., MacVicar, B.A. & Ellis-Davies, G.C.R. A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol-polyphosphates. Nat. Protoc. 6, 327–337 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garaschuk, O., Milos, R.I. & Konnerth, A. Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat. Protoc. 1, 380–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Matsuzaki, M., Ellis-Davies, G.C. & Kasai, H. Three-dimensional mapping of unitary synaptic connections by two-photon macro photolysis of caged glutamate. J. Neurophysiol. 99, 1535–1544 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Kantevari, S., Matsuzaki, M., Kanemoto, Y., Kasai, H. & Ellis-Davies, G.C.R. Two-color, two-photon uncaging of glutamate and GABA. Nat. Meth. 7, 123–125 (2010).

    Article  CAS  Google Scholar 

  35. Papageorgiou, G., Lukeman, M., Wan, P. & Corrie, J.E.T. An antenna triplet sensitiser for 1-acyl-7-nitroindolines improves the efficiency of carboxylic acid photorelease. Photochem. Photobiol. Sci. 3, 366–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Papageorgiou, G., Ogden, D. & Corrie, J.E. An antenna-sensitized nitroindoline precursor to enable photorelease of L-glutamate in high concentrations. J. Org. Chem. 69, 7228–7233 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Alvina, K., Walter, J.T., Kohn, A., Ellis-Davies, G. & Khodakhah, K. Questioning the role of rebound firing in the cerebellum. Nat. Neurosci. 11, 1256–1258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, Y.H.H., Sinha, S.R., Fedoryak, O.D., Ellis-Davies, G.C.R. & Bergles, D.E. Synthesis and characterization of 4-methoxy-7-nitroindolinyl-D-aspartate, a caged compound for selective activation of glutamate transporters and N-methyl-D-aspartate receptors in brain tissue. Biochemistry 44, 3316–3326 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the US National Institutes of Health (GM53395) to G.C.R.E.-D.

Author information

Authors and Affiliations

Authors

Contributions

G.C.R.E.-D. performed the synthesis and wrote the paper.

Corresponding author

Correspondence to Graham C R Ellis-Davies.

Ethics declarations

Competing interests

G.C.R.E.-D. has filed a patent in the United States of America on the synthesis of dinitroindolinyl-caged neurotransmitters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis-Davies, G. A practical guide to the synthesis of dinitroindolinyl-caged neurotransmitters. Nat Protoc 6, 314–326 (2011). https://doi.org/10.1038/nprot.2010.193

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.193

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing