Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex

Abstract

Instructing glial cells to generate neurons may prove to be a strategy to replace neurons that have degenerated. Here, we describe a robust protocol for the efficient in vitro conversion of postnatal astroglia from the mouse cerebral cortex into functional, synapse-forming neurons. This protocol involves two steps: (i) expansion of astroglial cells (7 d) and (ii) astroglia-to-neuron conversion induced by persistent and strong retroviral expression of Neurog2 (encoding neurogenin-2) or Mash1 (also referred to as achaete-scute complex homolog 1 or Ascl1) and/or distal-less homeobox 2 (Dlx2) for generation of glutamatergic or GABAergic neurons, respectively (7–21 d for different degrees of maturity). Our protocol of astroglia-to-neuron conversion by a single neurogenic transcription factor provides a stringent experimental system to study the specification of a selective neuronal subtype, thus offering an alternative to the use of embryonic or neural stem cells. Moreover, it can be a useful model for studies of lineage conversion from non-neuronal cells, with potential for brain regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Schematic structure of the recombinant retroviral vector of pCAG-Neurog2-IRES-DsRed.
Figure 3: Primary culture of adherent astroglial cells from the mouse postnatal cerebral cortex.
Figure 4: Postnatal cortical astroglia differentiate into βIII tubulin-positive neurons on forced expression of neurogenic fate determinants.
Figure 5: Postnatal cortical astroglia give rise to distinct types of neurons following forced expression of Neurog2 or Dlx2.

Similar content being viewed by others

References

  1. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    Article  CAS  Google Scholar 

  2. Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613 (2009).

    Article  CAS  Google Scholar 

  3. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315 (2002).

    Article  CAS  Google Scholar 

  4. Heinrich, C. et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 8, e1000373 (2010).

    Article  Google Scholar 

  5. Berninger, B. et al. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 27, 8654–8664 (2007).

    Article  CAS  Google Scholar 

  6. Campbell, K. & Götz, M. Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci. 25, 235–238 (2002).

    Article  CAS  Google Scholar 

  7. Pinto, L. & Götz, M. Radial glial cell heterogeneity—the source of diverse progeny in the CNS. Prog. Neurobiol. 83, 2–23 (2007).

    Article  CAS  Google Scholar 

  8. Hatakeyama, J., Tomita, K., Inoue, T. & Kageyama, R. Roles of homeobox and bHLH genes in specification of a retinal cell type. Development 128, 1313–1322 (2001).

    CAS  PubMed  Google Scholar 

  9. Zhao, C., Teng, E.M., Summers, R.G., Jr., Ming, G.L. & Gage, F.H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

    Article  CAS  Google Scholar 

  10. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 3, 1035–1041 (2010).

    Article  Google Scholar 

  11. Zhou, Q. & Melton, D.A. Extreme makeover: converting one cell into another. Cell Stem Cell 3, 382–388 (2008).

    Article  CAS  Google Scholar 

  12. Glaser, T. et al. Adult germ line stem cells as a source of functional neurons and glia. Stem Cells 26, 2434–2443 (2008).

    Article  Google Scholar 

  13. Varga, B.V. et al. Generation of diverse neuronal subtypes in cloned populations of stem-like cells. BMC Dev. Biol. 8, 89 (2008).

    Article  Google Scholar 

  14. Berninger, B., Guillemot, F. & Götz, M. Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells. Eur. J. Neurosci. 25, 2581–2590 (2007).

    Article  Google Scholar 

  15. Reyes, J.H. et al. Glutamatergic neuronal differentiation of mouse embryonic stem cells after transient expression of neurogenin 1 and treatment with BDNF and GDNF: in vitro and in vivo studies. J. Neurosci. 28, 12622–12631 (2008).

    Article  CAS  Google Scholar 

  16. Gaspard, N. et al. Generation of cortical neurons from mouse embryonic stem cells. Nat. Protoc. 4, 1454–1463 (2009).

    Article  CAS  Google Scholar 

  17. Bibel, M. et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat. Neurosci. 7, 1003–1009 (2004).

    Article  CAS  Google Scholar 

  18. Bibel, M., Richter, J., Lacroix, E. & Barde, Y.A. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat. Protoc. 2, 1034–1043 (2007).

    Article  CAS  Google Scholar 

  19. Chatzi, C. et al. Derivation of homogeneous GABAergic neurons from mouse embryonic stem cells. Exp. Neurol. 217, 407–416 (2009).

    Article  CAS  Google Scholar 

  20. Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    Article  CAS  Google Scholar 

  21. Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    Article  CAS  Google Scholar 

  22. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    Article  CAS  Google Scholar 

  23. Nikoletopoulou, V. et al. Neurotrophin receptor-mediated death of misspecified neurons generated from embryonic stem cells lacking Pax6. Cell Stem Cell 1, 529–540 (2007).

    Article  CAS  Google Scholar 

  24. Dragunow, M. The adult human brain in preclinical drug development. Nat. Rev. Drug Discov. 7, 659–666 (2008).

    Article  CAS  Google Scholar 

  25. Buffo, A. et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc. Natl Acad. Sci. USA 105, 3581–3586 (2008).

    Article  CAS  Google Scholar 

  26. Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C. & Steindler, D.A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA 97, 13883–13888 (2000).

    Article  CAS  Google Scholar 

  27. Blum, R. et al. Neuronal network formation from reprogrammed early postnatal rat cortical glial cells. Cereb. Cortex 21, 413–424 (2011).

    Article  Google Scholar 

  28. Naviaux, R.K., Costanzi, E., Haas, M. & Verma, I.M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tashiro, A., Zhao, C. & Gage, F.H. Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo. Nat. Protoc. 1, 3049–3055 (2006).

    Article  CAS  Google Scholar 

  30. Mori, T. et al. Inducible gene deletion in astroglia and radial glia—a valuable tool for functional and lineage analysis. Glia 54, 21–34 (2006).

    Article  Google Scholar 

  31. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C.G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000).

    Article  CAS  Google Scholar 

  32. Brewer, G.J. & Cotman, C.W. Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res. 494, 65–74 (1989).

    Article  CAS  Google Scholar 

  33. Brill, M.S. et al. A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J. Neurosci. 28, 6439–6452 (2008).

    Article  CAS  Google Scholar 

  34. Ory, D.S., Neugeboren, B.A. & Mulligan, R.C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11400–11406 (1996).

    Article  CAS  Google Scholar 

  35. Giorgetti, A. et al. Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nat. Protoc. 5, 811–820 (2010).

    Article  CAS  Google Scholar 

  36. Rieger, M.A., Hoppe, P.S., Smejkal, B.M., Eitelhuber, A.C. & Schroeder, T. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009).

    Article  CAS  Google Scholar 

  37. Johansson, C.B., Svensson, M., Wallstedt, L., Janson, A.M. & Frisen, J. Neural stem cells in the adult human brain. Exp. Cell Res. 253, 733–736 (1999).

    Article  CAS  Google Scholar 

  38. Fitzsimonds, R.M., Song, H.J. & Poo, M.M. Propagation of activity-dependent synaptic depression in simple neural networks. Nature 388, 439–448 (1997).

    Article  CAS  Google Scholar 

  39. Schinder, A.F., Berninger, B. & Poo, M. Postsynaptic target specificity of neurotrophin-induced presynaptic potentiation. Neuron 25, 151–163 (2000).

    Article  CAS  Google Scholar 

  40. Cummins, T.R., Rush, A.M., Estacion, M., Dib-Hajj, S.D. & Waxman, S.G. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat. Protoc. 4, 1103–1112 (2009).

    Article  CAS  Google Scholar 

  41. Lippiat, J.D. Whole-cell recording using the perforated patch clamp technique. Methods Mol. Biol. 491, 141–149 (2008).

    Article  CAS  Google Scholar 

  42. Bekkers, J.M. & Stevens, C.F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl. Acad. Sci. USA 88, 7834–7838 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft to B.B. and M.G. (BE 4182/1-3 and GO 640/9-1) and to T.S.-E. (SCHR 1142/1-1), and by the Bavarian State Ministry of Sciences, Research and the Arts (ForNeuroCell) to B.B. and M.G. We thank S. Bauer for virus production.

Author information

Authors and Affiliations

Authors

Contributions

C.H. contributed to protocol design, generation and characterization of the astroglia-derived neurons and preparation of the manuscript; S.G. to the design of the transfection procedure and single-cell tracking by time-lapse video microscopy; G.M. to the characterization of the astroglia-derived neurons; A.L. and R.S. to viral vector design; T.S.-E. to astroglia culture and immunocytochemistry; and T.S. to single-cell tracking by time-lapse video microscopy. M.G. pioneered this protocol for astroglia-to-neuron conversion and contributed to the current protocol design and the manuscript; B.B. contributed to protocol design, electrophysiological characterization of the astroglia-derived neurons and preparation of the manuscript.

Corresponding author

Correspondence to Benedikt Berninger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Direct visualisation of the astroglia-to-neuron metamorphosis. (AVI 8843 kb)

Temporal sequence of astroglia-to-neuron conversion by Neurog2 of a fate-mapped astroglia derived from GLAST::CreERT2/Z/EG mice following recombination in vivo between P2-P7. The movie starts with a GFP-fluorescence and bright field image at the beginning of the time-lapse experiment. The GFP-positive cell is marked with a red arrow throughout the sequence. The cell is subsequently followed using bright field images. At the point when DsRed fluorescence is detectable, a GFP fluorescence image is shown to demonstrate the co-expression of DsRed and GFP in the very same cell. Subsequently, DsRed fluorescence images (grey scale) monitor the transduced cell and its gradual metamorphosis into a neuron. At the end of the imaging sequence a GFP fluorescence image is shown to confirm that the neuron is indeed GFP reporter-positive. The time is indicated in each image. For details on the single-cell tracking method see Rieger et al. (2009).

References

Rieger, M. A., Hoppe, P. S., Smejkal, B. M., Eitelhuber, A. C. & Schroeder, T. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, C., Gascón, S., Masserdotti, G. et al. Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nat Protoc 6, 214–228 (2011). https://doi.org/10.1038/nprot.2010.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.188

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing