Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Integrated mass spectrometry–based analysis of plasma glycoproteins and their glycan modifications

Abstract

We present a protocol for the identification of glycosylated proteins in plasma followed by elucidation of their individual glycan compositions. The study of glycoproteins by mass spectrometry is usually based on cleavage of glycans followed by separate analysis of glycans and deglycosylated proteins, which limits the ability to derive glycan compositions for individual glycoproteins. The methodology described here consists of 2D HPLC fractionation of intact proteins and liquid chromatography–multistage tandem mass spectrometry (LC-MS/MSn) analysis of digested protein fractions. Protein samples are separated by 1D anion-exchange chromatography (AEX) with an eight-step salt elution. Protein fractions from each of the eight AEX elution steps are transferred onto the 2D reversed-phase column to further separate proteins. A digital ion trap mass spectrometer with a wide mass range is then used for LC-MS/MSn analysis of intact glycopeptides from the 2D HPLC fractions. Both peptide and oligosaccharide compositions are revealed by analysis of the ion fragmentation patterns of glycopeptides with an intact glycopeptide analysis pipeline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A general overview of the procedure for profiling human plasma glycoproteomics.
Figure 2: Chromatograms for plasma immunodepletion and 2D HPLC chromatography.
Figure 3: Comparison of on-plate glycopeptide enrichment with two types of MALDI plates.
Figure 4: Distribution of crystallized GP-1 and GP-2 glycopeptides in a μFocus plate across the spotted area.
Figure 5: MALDI-DIT mass spectra of transferrin glycopeptides GP-1 and GP-2 at four different positions (outside, middle, inside, center) in the μFocus plate.
Figure 6: Data analysis overview.
Figure 7: Glycopeptide MS/MS ions search process.
Figure 8: Effect of collision energy on collision-induced dissociation MS/MS analysis of transferrin glycopeptides GP-1 and GP-2.
Figure 9: Deamination of a glycopeptide with N-terminal glutamine with MALDI-DIT collision-induced dissociation MS/MS.
Figure 10: Precursor selection for MS/MS analysis with MALDI-DIT.
Figure 11: Glycosylation heterogeneity at a single site in α-1-acid glycoprotein (encoded by ORM2).

Similar content being viewed by others

References

  1. Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys Acta. 1473, 4–8 (1999).

    Article  CAS  Google Scholar 

  2. Wong, C.H. Protein glycosylation: new challenges and opportunities. J. Org. Chem. 70, 4219–4225 (2005).

    Article  CAS  Google Scholar 

  3. Cantagrel, V., Lefeber, D.J., Ng, B.G., Guan, Z., Silhavy, J.L. & Bielas, S.L. et al. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 142, 203–217 (2010).

    Article  CAS  Google Scholar 

  4. Montpetit, M.L., Stocker, P.J., Schwetz, T.A., Harper, J.M., Norring, S.A. & Schaffer, L. et al. Regulated and aberrant glycosylation modulate cardiac electrical signaling. Proc Natl Acad Sci USA 106, 16517–16522 (2009).

    Article  CAS  Google Scholar 

  5. Ohtsubo, K. & Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell. 126, 855–867 (2006).

    Article  CAS  Google Scholar 

  6. Taylor, A.D., Hancock, W.S., Hincapie, M., Taniguchi, N. & Hanash, S.M. Towards an integrated proteomic and glycomic approach to finding cancer biomarkers. Genome Med. 1, 57 (2009).

    Article  Google Scholar 

  7. Peracaula, R. et al. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 13, 457–470 (2003).

    Article  CAS  Google Scholar 

  8. Leiserowitz, G.S. et al. Glycomics analysis of serum: a potential new biomarker for ovarian cancer? Int. J. Gynecol. Cancer 18, 470–475 (2008).

    Article  CAS  Google Scholar 

  9. Hakomori, S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. USA 99, 10231–10233 (2002).

    Article  CAS  Google Scholar 

  10. Kyselova, Z. et al. Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin. Chem. 54, 1166–1175 (2008).

    Article  CAS  Google Scholar 

  11. Soltermann, A. et al. N-glycoprotein profiling of lung adenocarcinoma pleural effusions by shotgun proteomics. Cancer 114, 124–133 (2008).

    Article  CAS  Google Scholar 

  12. Peracaula, R., Barrabés, S., Sarrats, A., Rudd, P.M. & de Llorens, R. Altered glycosylation in tumours focused to cancer diagnosis. Dis. Markers 25, 207–218 (2008).

    Article  CAS  Google Scholar 

  13. Gavel, Y. & Von Heijne, G. Sequence difference between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 3, 433–442 (1990).

    Article  CAS  Google Scholar 

  14. Hansen, J.E. et al. Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase. Biochem. J. 308, 801–81 (1995).

    Article  CAS  Google Scholar 

  15. Wuhrer, M., Catalina, M.I., Deelder, A.M. & Hokke, C.H. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 849, 115–128 (2007).

    Article  CAS  Google Scholar 

  16. Geyer, H. & Geyer, R. Strategies for analysis of glycoprotein glycosylation. Biochim. Biophys. Acta. 1764, 1853–1869 (2006).

    Article  CAS  Google Scholar 

  17. Zhang, H., Li, X.J., Martin, D.B. & Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003).

    Article  CAS  Google Scholar 

  18. Kaji, H. et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol. 21, 667–672 (2003).

    Article  CAS  Google Scholar 

  19. Wada, Y. et al. Comparison of the methods for profiling glycoprotein glycans—HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17, 411–422 (2007).

    Article  CAS  Google Scholar 

  20. Wuhrer, M., de Boer, A.R. & Deelder, A.M. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev. 28, 192–206 (2009).

    Article  CAS  Google Scholar 

  21. Kirmiz, C. et al. A serum glycomics approach to breast cancer biomarkers. Mol. Cell Proteomics 6, 43–55 (2007).

    Article  CAS  Google Scholar 

  22. Li, B. et al. Glycoproteomic analyses of ovarian cancer cell lines and sera from ovarian cancer patients show distinct glycosylation changes in individual proteins. J. Proteome Res. 7, 3776–3788 (2008).

    Article  CAS  Google Scholar 

  23. Abd Hamid, U.M. et al. A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 18, 1105–1118 (2008).

    Article  CAS  Google Scholar 

  24. Wang, H. & Hanash, S.M. Increased throughput and reduced carryover of mass spectrometry-based proteomics using a high-efficiency nonsplit nanoflow parallel dual-column capillary HPLC system. J. Proteome Res. 7, 2743–2755 (2008).

    Article  CAS  Google Scholar 

  25. Faca, V.M. et al. A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med. 5, e123 (2008).

    Article  Google Scholar 

  26. Paczesny, S. et al. Elafin is a biomarker of graft-versus-host disease of the skin. Sci. Transl. Med. 2, 13ra2 (2010).

    Article  Google Scholar 

  27. Fukuyama, Y., Nakaya, S., Yamazaki, Y. & Tanaka, K. Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides. Anal. Chem. 80, 2171–2179 (2008).

    Article  CAS  Google Scholar 

  28. Wang, H. et al. Intact-protein-based high-resolution three-dimensional quantitative analysis system for proteome profiling of biological fluids. Mol. Cell Proteomics 4, 618–625 (2005).

    Article  CAS  Google Scholar 

  29. Wang, H. & Hanash, S. Electrospray mass spectrometry for quantitative plasma proteome analysis. Methods Mol. Biol. 564, 227–242 (2009).

    Article  CAS  Google Scholar 

  30. Freiwald, A. & Sauer, S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 4, 732–742 (2009).

    Article  CAS  Google Scholar 

  31. Xu, T., Wong, C.C., Kashina, A. & Yates, J.R. III. Identification of N-terminally arginylated proteins and peptides by mass spectrometry. Nat. Protoc. 4, 325–332 (2009).

    Article  CAS  Google Scholar 

  32. Anderson, N.L. & Anderson, N.G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell Proteomics 1, 845–867 (2002).

    Article  CAS  Google Scholar 

  33. Liu, T. et al. Evaluation of multi-protein immunoaffinity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry. Mol. Cell Proteomics 5, 2167–2174 (2006).

    Article  CAS  Google Scholar 

  34. Polaskova, V., Kapur, A., Khan, A., Molloy, M.P. & Baker, M.S. High-abundance protein depletion: comparison of methods for human plasma biomarker discovery. Electrophoresis 31, 471–482 (2010).

    Article  CAS  Google Scholar 

  35. Wada, Y., Tajiri, M. & Yoshida, S. Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76, 6560–6565 (2004).

    Article  CAS  Google Scholar 

  36. Sparbier, K., Koch, S., Kessler, I., Wenzel, T. & Kostrzewa, M. Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J. Biomol Tech. 16, 407–413 (2005).

    PubMed  PubMed Central  Google Scholar 

  37. Pfenninger, A., Karas, M., Finke, B., Stahl, B. & Sawatzki, G. Matrix optimization for matrix-assisted laser desorption/ionization mass spectrometry of oligosaccharides from human milk. J. Mass Spectrom. 34, 98–104 (1999).

    Article  CAS  Google Scholar 

  38. Steven, L., Cohen, S.L. & Chait, B.T. Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal. Chem. 68, 31–37 (1996).

    Article  Google Scholar 

  39. Ding, L., Sudakov, M., Brancia, F.L., Giles, R. & Kumashiro, S. A digital ion trap mass spectrometer coupled with atmospheric pressure ion sources. J. Mass Spectrom. 39, 471–484 (2004).

    Article  CAS  Google Scholar 

  40. Craig, R. & Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    Article  CAS  Google Scholar 

  41. Kersey, P.J. et al. The International Protein Index: an integrated database for proteomics experiments. Proteomics 4, 1985–1988 (2004).

    Article  CAS  Google Scholar 

  42. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  43. Eng, J.K., McCormack, A.L. & Yates, J.R. III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  44. Na, S. & Paek, E. Quality assessment of tandem mass spectra based on cumulative intensity normalization. J. Proteome Res. 5, 3241–3248 (2006).

    Article  CAS  Google Scholar 

  45. Beausoleil, S.A., Villén, J., Gerber, S.A., Rush, J. & Gygi, S.P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285–1292 (2006).

    Article  CAS  Google Scholar 

  46. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 748, 248–254 (1976).

    Article  Google Scholar 

  47. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R.A . Statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  Google Scholar 

  48. Ding, L., Brancia, F.L., Giles, R., Smirnov, S. & Nikolaev, E. Advances of Tandem MS Functions with a Digital Ion Trap. Proc. 53rd ASMS Conf. 5–9 June 2005, San Antonio, Texas.

  49. Baldwin, M.A. et al. Tandem mass spectrometry of peptides with N-terminal glutamine: Studies on a prion protein peptide. J. Am. Soc. Mass Spectrom. 1, 258–264 (1990).

    Article  CAS  Google Scholar 

  50. Neta, P., Pu, Q.L., Kilpatrick, L., Yang, X. & Stein, S.E. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides. J. Am. Soc. Mass Spectrom. 18, 27–36 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.W., K.T. and S.H. conceived and supervised the project. H.W. contributed to the development and evaluation of the methods and combined the data and wrote the protocol. C.-H.W. designed and developed the analysis software. A.C. performed the sample fractionation. H.W. and S.S. contributed to the mass spectrometry analysis of the sample. H.T. and S.I. optimized the MALDI-DIT instrument. A. Taguchi, A. Taylor and A.C. prepared the analyzed sample. H.T., M.M. and S.K. designed and developed the MALDI-DIT software.

Corresponding author

Correspondence to Hong Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

Contains input files, MS1 spectra, MS2 spectra and analysis output for Well A10. (ZIP 23419 kb)

Supplementary Data 2

Contains input files, MS1 spectrum, MS2 spectra and analysis output for Well A12. (ZIP 16034 kb)

Supplementary Figure 1

Total ion chromatogram of transferrin tryptic digest analyzed by on-line nano RPLC-ESI-LTQFT. (PPT 87 kb)

Supplementary Figure 2

Isotopic peak distribution for the identified glycopeptide with the sequence R.NEEYN*K.S and the glycan composition 5Hex4HexNAc1Sia. (PPT 141 kb)

Supplementary Table 1

Efficiency of glycopeptides enrichment by hydrophilic interaction chromatography. (DOC 37 kb)

Supplementary Table 2

Protein analysis using nano LC-ESI LTQ-FT. (PDF 51 kb)

Supplementary Table 3

Analysis of glycoproteins in a human plasma fraction by LC MALDI-DIT MS/MS. (PDF 62 kb)

Supplementary Program

Program.zip (21MB) file contains programs, N-glycan database, protein database, refinement databases and readme. (ZIP 21409 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wong, CH., Chin, A. et al. Integrated mass spectrometry–based analysis of plasma glycoproteins and their glycan modifications. Nat Protoc 6, 253–269 (2011). https://doi.org/10.1038/nprot.2010.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.176

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing