Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants

Abstract

Introducing bioactive molecules into plants helps establish their roles in plant growth and development. Here we describe a simple and effective petiole-feeding protocol to introduce aqueous solutions into the vascular stream and apoplast of dicotyledonous plants. This 'intravenous feeding' procedure has wide applicability to plant physiology, specifically with regard to the analysis of source-sink allocations, long-distance signaling, hormone biology and overall plant development. In comparison with existing methods, this technique allows the continuous feeding of aqueous solutions into plants without the need for constant monitoring. Findings are provided from experiments using soybean plants fed with a range of aqueous solutions containing tracer dyes, small metabolites, radiolabeled chemicals and biologically active plant extracts controlling nodulation. Typically, feeding experiments consist of (i) generating samples to feed (extracts, solutions and so on); (ii) growing recipient plants; (iii) setting up the feeding apparatus; and (iv) feeding sample solutions into the recipient plants. When the plants are ready, the feeding procedure can take 1–3 h to set up depending on the size of experiment (not including preparation of materials). The petiole-feeding technique also works with other plant species, including tomato, chili pepper and cabbage plants, as demonstrated here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of the feeding assembly.
Figure 2: Attachment of the feeding assembly to a recipient soybean plant.
Figure 3: Translocation of radioactive mannitol following petiole feeding in soybean (Bragg) plants.
Figure 4: Visualization of brilliant blue dye.
Figure 5: Suppression of nodule development in soybean.

Similar content being viewed by others

References

  1. Beveridge, C.A., Mathesius, U., Rose, R.J. & Gresshoff, P.M. Common regulatory themes in meristem development and whole-plant homeostasis. Curr. Opin. Plant Biol. 10, 44–51 (2007).

    Article  CAS  Google Scholar 

  2. Ferguson, B.J. et al. Molecular analysis of legume nodule development and autoregulation. J. Integr. Plant Biol. 52, 61–76 (2010).

    Article  CAS  Google Scholar 

  3. Wilson, J.W., Roberts, L.W., Wilson, P.M.W. & Gresshoff, P.M. Stimulatory and inhibitory effects of sucrose concentration on xylogenesis in lettuce pith explants; possible mediation by ethylene biosynthesis. Ann. Bot. 73, 65–73 (1994).

    Article  CAS  Google Scholar 

  4. Zhang, H. & Forde, B.G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407–409 (1998).

    Article  CAS  Google Scholar 

  5. Gresshoff, P.M. et al. Genetic analysis of ethylene regulation of legume nodulation. Plant Signal. Behav. 4, 818–823 (2009).

    Article  CAS  Google Scholar 

  6. Lorteau, M.-A., Ferguson, B.J. & Guinel, F.C. Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol. Plant 112, 421–428 (2001).

    Article  CAS  Google Scholar 

  7. Phinney, B.O. Growth response of single-gene dwarf mutants in maize to giberellic acid. Proc. Natl. Acad. Sci. USA 42, 185–189 (1956).

    Article  CAS  Google Scholar 

  8. Lin, Y.-H., Ferguson, B.J., Kereszt, A. & Gresshoff, P.M. Suppression of hypernodulation in soybean by a leaf-extracted, NARK- and Nod factor-dependent, low molecular mass fraction. New Phytol. 185, 1074–1086 (2010).

    Article  CAS  Google Scholar 

  9. Carroll, B.J. & Gresshoff, P.M. Nitrate inhibition of nodulation and nitrogen fixation in white clover. Z. Pflanzenphysiol. 110, 77–88 (1983).

    Article  CAS  Google Scholar 

  10. Faessel, L., Nassr, N., Lebeau, T. & Walter, B. Chemically-induced resistance on soybean inhibits nodulation and mycorrhization. Plant Soil 329, 259–268 (2009).

    Article  Google Scholar 

  11. King, C.A., Purcell, L.C. & Vories, E.D. Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications. Agron. J. 93, 179–186 (2001).

    Article  CAS  Google Scholar 

  12. Kinkema, M. & Gresshoff, P.M. Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK. Mol. Plant Microbe Interact. 21, 1337–1348 (2008).

    Article  CAS  Google Scholar 

  13. Nakagawa, T. & Kawaguchi, M. Shoot-applied meja suppresses root nodulation in Lotus japonicus. Plant Cell Physiol. 47, 176–180 (2006).

    Article  CAS  Google Scholar 

  14. Terakado, J., Yoneyama, T. & Fujihara, S. Shoot-applied polyamines suppress nodule formation in sobyean (Glycine max). J. Plant Physiol. 163, 497–505 (2006).

    Article  CAS  Google Scholar 

  15. Wetzel, A., Parniske, M. & Werner, D. Pleiotropic effect of fluoranthene on anthocyanin synthesis and nodulation of Medicago sativa is reversed by the plant flavone luteolin. Bull. Environ. Contam. Toxicol. 54, 633–639 (1995).

    Article  CAS  Google Scholar 

  16. Bashor, C.J. & Dalton, D.A. Effects of exogenous application and stem infusion of ascorbate on soybean (Glycine max) root nodules. New Phytol. 142, 19–26 (1999).

    Article  CAS  Google Scholar 

  17. Ferguson, B.J., Ross, J.J. & Reid, J.B. Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol. 138, 2396–2405 (2005).

    Article  CAS  Google Scholar 

  18. Lian, B., Zhou, X., Miransari, M. & Smith, D.L. Effects of salicylic acid on the development and root nodulation of soybean seedlings. J. Agron. Crop. Sci. 185, 187–192 (2000).

    Article  CAS  Google Scholar 

  19. Lohar, D., Stiller, J., Kam, J., Stacey, G. & Gresshoff, P.M. Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann. Bot. 104, 277–285 (2009).

    Article  CAS  Google Scholar 

  20. Biswas, B., Chan, P.K. & Gresshoff, P.M. A novel ABA insensitive mutant of Lotus japonicus with a wilty phenotype displays unaltered nodulation regulation. Mol. Plant 2, 487–499 (2009).

    Article  CAS  Google Scholar 

  21. Lohar, D.P., Schuller, K., Buzas, D.M., Gresshoff, P.M. & Stiller, J. Transformation of Lotus japonicus using the herbicide resistance bar gene as a selectable marker. J. Exp. Bot. 52, 1697–1702 (2001).

    Article  CAS  Google Scholar 

  22. Rashotte, A.M., Brady, S.R., Reed, R.C., Ante, S.J. & Muday, G.K. Basipetal auxin transport is required for gravitropism in roots of arabidopsis. Plant Physiol. 122, 481–490 (2000).

    Article  CAS  Google Scholar 

  23. Ridge, R.W., Bender, G.L. & Rolfe, B.G. Nodule-like structures induced on the roots of wheat seedlings by the addition of the synthetic auxin 2,4-dichlorophenoxyaceticacid and the effects of microorganisms. Aust. J. Plant Physiol. 19, 481–492 (1992).

    CAS  Google Scholar 

  24. Hayashi, S., Gresshoff, P.M. & Kinkema, M. Molecular analysis of lipoxygenases associated with nodule development in soybean. Mol. Plant Microbe Interact. 21, 843–853 (2008).

    Article  CAS  Google Scholar 

  25. Malik, N.S.A., Pence, M.K., Calvert, H.E. & Bauer, W.D. Rhizobium infection and nodule development in soybean are affected by exposure of the cotyledons to light. Plant Physiol. 75, 90–94 (1984).

    Article  CAS  Google Scholar 

  26. Holland, M. & Polacco, J. Urea metabolism in soybean: a joint effort between plant and bacterial commensal? (abstract No. 28). Plant Physiol. 93, S-6 (1990).

    Google Scholar 

  27. Creelman, R.A. & Mullet, J.E. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 92, 4114–4119 (1995).

    Article  CAS  Google Scholar 

  28. Pinton, R., Varanini, Z. & Nannipieri, P. The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface (Taylor & Francis Group, 2007).

  29. Bano, A. & Harper, J.E. Plant growth regulators and phloem exudates modulate root nodulation of soybean. Funct. Plant Biol. 29, 1299–1307 (2002).

    Article  CAS  Google Scholar 

  30. Imin, N., Nizamidin, M., Wu, T. & Rolfe, B.G. Factors involved in root formation in Medicago truncatula. J. Exp. Bot. 58, 439–451 (2007).

    Article  CAS  Google Scholar 

  31. Malik, N.S.A., Calvert, H.E. & Bauer, W.D. Nitrate induced regulation of nodule formation in soybean. Plant Physiol. 84, 266–271 (1987).

    Article  CAS  Google Scholar 

  32. Suzuki, A. et al. Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol. 45, 914–922 (2004).

    Article  CAS  Google Scholar 

  33. Terakado, J. & Fujihara, S. Involvement of polyamines in the root nodule regulation of soybeans (Glycine max). Plant Root 2, 46–53 (2008).

    Article  Google Scholar 

  34. Tominaga, A. et al. Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus. Plant Physiol. 151, 1965–1976 (2009).

    Article  CAS  Google Scholar 

  35. Ferguson, B.J. & Mathesius, U. Signaling interactions during nodule development. J. Plant Growth Regul. 22, 47–72 (2003).

    Article  CAS  Google Scholar 

  36. Ferguson, B.J., Wiebe, E.M., Emery, R.J.N. & Guinel, F.C. Cytokinin accumulation and an altered ethylene response mediate the pleiotropic phenotype of the pea nodulation mutant R50 (sym16). Can. J. Bot. 83, 989–1000 (2005).

    Article  Google Scholar 

  37. Sulieman, S., Fischinger, S.A., Gresshoff, P.M. & Schulze, J. Asparagine as a major factor in the N-feedback regulation of N fixation in Medicago truncatula. Physiol. Plant 140, 21–31 (2010).

    Article  CAS  Google Scholar 

  38. Aharoni, N. Interrelationship between ethylene and growth regulators in the senescence of lettuce leaf discs. J. Plant Growth Regul. 8, 309–317 (1989).

    Article  CAS  Google Scholar 

  39. McNeill, A.M., Zhu, C. & Fillery, I.R.P. Use of in situ15N-labelling to estimate the total below-ground nitrogen of pasture legumes in intact soil-plant systems. Aust. J. Agric. Res. 48, 295–304 (1997).

    Article  Google Scholar 

  40. Ohto, M.-A., Nakamura-Kito, K. & Nakamura, K. Induction of expression of genes coding for sporamin and {beta}-amylase by polygalacturonic acid in leaf-petiole cuttings of sweet potato. Plant Physiol. 99, 422–427 (1992).

    Article  CAS  Google Scholar 

  41. Rook, F. et al. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J. 26, 421–433 (2001).

    Article  CAS  Google Scholar 

  42. Takeda, S., Mano, S., Ohto, M.-A. & Nakamura, K. Inhibitors of protein phosphatases 1 and 2A block the sugar-inducible gene expression in plants. Plant Physiol. 106, 567–574 (1994).

    Article  CAS  Google Scholar 

  43. Yalpani, N., Leon, J., Lawton, M.A. & Raskin, I. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol. 103, 315–321 (1993).

    Article  CAS  Google Scholar 

  44. Yamaya, H. & Arima, Y. Evidence that a shoot-derived substance is involved in regulation of the super-nodulation trait in soybean. Soil Sci. Plant Nutr. 56, 115–122 (2010).

    Article  Google Scholar 

  45. Searle, I.R. et al. Long-distance signalling in nodulation directed by a CLAVATA1-Like receptor kinase. Science 299, 109–112 (2003).

    Article  CAS  Google Scholar 

  46. Herridge, D.F. Relative abundance of ureides and nitrate in plant tissues of soybean as a quantitative assay of nitrogen fixation. Plant Physiol. 70, 1–6 (1982).

    Article  CAS  Google Scholar 

  47. Miyahara, A. et al. Soybean nodule autoregulation receptor kinase phosphorylates two kinase-associated protein phosphatases in vitro. J. Biol. Chem. 283, 25381–25391 (2008).

    Article  CAS  Google Scholar 

  48. Ligero, F., Lluch, C. & Olivares, J. Evolution of ethylene from roots and nodulation rate of alfalfa (Medicago sativa L.) plants inoculated with Rhizobium meliloti as affected by the presence of nitrate. J. Plant Physiol. 129, 461–467 (1987).

    Article  CAS  Google Scholar 

  49. Lee, K.H. & LaRue, T.A. Exogenous ethylene inhibits nodulation of Pisum sativum L. cv Sparkle. Plant Physiol. 100, 1759–1763 (1992).

    Article  CAS  Google Scholar 

  50. Cho, M. & Harper, J. Effect of abscisic acid application on root isoflavonoid concentration and nodulation of wild-type and nodulation-mutant soybean plants. Plant Soil 153, 145–149 (1993).

    Article  CAS  Google Scholar 

  51. Ding, Y. et al. Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20, 2681–2695 (2008).

    Article  CAS  Google Scholar 

  52. Phillips, D.A. Abscisic acid inhibition of root nodule initiation in Pisum sativum. Planta 100, 181–190 (1971).

    Article  CAS  Google Scholar 

  53. Vincent, J.M. A Manual for the Practical Study of Root-Nodule Bacteria International Biological Programme (Blackwell Scientific, 1970).

  54. Cappucino, J. & Sherman, N. Microbiology: A Laboratory Manual, 9 edn, 1–477 (Benjamin/Cummings Science Publishing, 1999).

Download references

Acknowledgements

We thank the Australian Research Council for provision of a Centre of Excellence grant (CEO348212); we also thank the Queensland State Government Smart State Innovation Scheme and the University of Queensland Strategic Fund for support. We thank D. Reid (Centre for Integrative Legume Research) for the RMH formulation and C. Atkins (University of Western Australia) for providing lupin phloem.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the design of the technique and to the composition of the paper. Y.-H.L. and M.-H.L. were responsible for the development and optimization of the experimental technique. Y.-H.L. was responsible for data acquisition and analysis. P.M.G. and B.J.F. provided critical creative input and supervision for the development of the technique.

Corresponding author

Correspondence to Peter M Gresshoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YH., Lin, MH., Gresshoff, P. et al. An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nat Protoc 6, 36–45 (2011). https://doi.org/10.1038/nprot.2010.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.171

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research