Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A concise and scalable route to L-azidohomoalanine

Abstract

A concise and highly efficient synthetic route to L-azidohomoalanine (L-Aha) and its homologues is presented here. These chemically modified amino acids are used for the introduction of bioorthogonal handles into proteins. The described route avoids major problems of previously reported methods including expensive starting materials, low efficiency, and lack of scalability. Starting from inexpensive N-Boc-O-Bn-L-aspartic acid, gram quantities of L-Aha hydrochloride can be prepared with high purity. The reactions can be completed within 1 week and the products can be incorporated into proteins using L-methionine auxotrophs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Small- and large-scale preparation of L-Aha.

Similar content being viewed by others

References

  1. Sletten, E.M. & Bertozzi, C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  2. Van Hest, J.C.M., Kiick, K.L. & Tirrell, D.A. Efficient incorporation of unsaturated methionine analogues into proteins in vivo. J. Am. Chem. Soc. 122, 1282–1288 (2000).

    Article  CAS  Google Scholar 

  3. Datta, D., Wang, P., Carrico, I.S., Mayo, S.L. & Tirrell, D.A. A designed phenylalanyl-tRNA synthetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. J. Am. Chem. Soc. 124, 5652–5653 (2002).

    Article  CAS  Google Scholar 

  4. Kiick, K.L., Saxon, E., Tirrell, D.A. & Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl Acad. Sci. USA 99, 19–24 (2002).

    Article  CAS  Google Scholar 

  5. Link, A.J. & Tirrell, D.A. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J. Am. Chem. Soc. 125, 11164–11165 (2003).

    Article  CAS  Google Scholar 

  6. Agard, N.J., Baskin, J.M., Prescher, J.A., Lo, A. & Bertozzi, C.R. A comparative study of bioorthogonal reactions with azides. ACS Chem. Biol. 1, 644–648 (2006).

    Article  CAS  Google Scholar 

  7. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  8. Kolb, H.C., Finn, M.G. & Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  9. Meldal, M. & Tornoe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008).

    Article  CAS  Google Scholar 

  10. Codelli, J.A., Baskin, J.M., Agard, N.J. & Bertozzi, C.R. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J. Am. Chem. Soc. 130, 11486–11493 (2008).

    Article  CAS  Google Scholar 

  11. Baskin, J.M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA 104, 16793–16797 (2007).

    Article  CAS  Google Scholar 

  12. Sletten, E.M. & Bertozzi, C.R. A hydrophilic azacyclooctyne for Cu-free click chemistry. Org. Lett. 10, 3097–3099 (2008).

    Article  CAS  Google Scholar 

  13. Chang, P.V. et al. Copper-free click chemistry in living animals. Pro. Natl. Acad. Sci. USA 107, 1821–1826 (2010).

    Article  CAS  Google Scholar 

  14. Oh, K.-I., Lee, J.-H., Joo, C., Han, H. & Cho, M. β-Azidoalanine as an IR probe: application to amyloid Aβ(16-22) aggregation. J. Phys. Chem. B 112, 10352–10357 (2008).

    Article  CAS  Google Scholar 

  15. Ye, S., Huber, T., Vogel, R. & Sakmar, T.P. FTIR analysis of GPCR activation using azido probes. Nat. Chem. Biol. 5, 397–399 (2009).

    Article  CAS  Google Scholar 

  16. Griffin, R.J. The medicinal chemistry of the azido group. Prog. Med. Chem. 31, 121–232 (1994).

    Article  CAS  Google Scholar 

  17. Wang, L., Xie, J. & Schultz, P.G. Expanding the genetic code. Ann. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006).

    Article  Google Scholar 

  18. Wiltschi, B., Merkel, L. & Budisa, N. Fine tuning the N-terminal residue excision with methionine analogues. Chembiochem 10, 217–220 (2009).

    Article  CAS  Google Scholar 

  19. Link, A.J., Vink, M.K.S. & Tirrell, D.A. Presentation and detection of azide functionality in bacterial cell surface proteins. J. Am. Chem. Soc. 126, 10598–10602 (2004).

    Article  CAS  Google Scholar 

  20. Link, A.J., Vink, M.K.S. & Tirrell, D.A. Preparation of the functionalizable methionine surrogate azidohomoalanine via copper-catalyzed diazotransfer. Nat. Protoc. 2, 1879–1883 (2007).

    Article  CAS  Google Scholar 

  21. Link, A.J., Vink, M.K.S. & Tirrell, D.A. Synthesis of the functionalizable methionine surrogate azidohomoalanine using Boc-homoserine as precursor. Nat. Protoc. 2, 1884–1887 (2007).

    Article  CAS  Google Scholar 

  22. Mangold, J.B., Mischke, M.R. & LaVelle, J.M. Azidoalanine mutagenicity in Salmonella: effect of homologation and a-methyl substitution. Mut. Res. 216, 27–33 (1989).

    Article  CAS  Google Scholar 

  23. LaVelle, J.M. & Mangold, J.B. Structure–activity relationships of the azide metabolite, azidoalanine, in S. typhimurium. Mutat. Res. 177, 27–33 (1987).

    Article  CAS  Google Scholar 

  24. Mangold, J.B., Yaohony, D., Mischke, M.R. & LaVelle, J.M. Effects of deuterium labeling on azido amino acid mutagenicity in Salmonella typhimurium. Mutat. Res. 308, 33–42 (1994).

    Article  CAS  Google Scholar 

  25. Roth, S. & Thomas, N.R. A concise route to L-azidoamino acids: L-azidoalanine, L-azidohomoalanine and L-azidonorvaline. Synlett 4, 607–609 (2010).

    Google Scholar 

  26. Keicher, T. & Löbbecke, S. in Organic Azides: Syntheses and Applications (eds., Bräse, S. & Banert, K.) 3–27 (John Wiley & Sons, 2010).

Download references

Acknowledgements

We thank the Biotechnology and Biosciences Research Council (BBSRC) (BBE0140891) and Medical Research Council (MRC) (G0801741) for funding this project. The thermogravimetric analysis and dynamic scanning calorimetry measurements on L-Aha were conducted by E. Greenhalgh under the supervision of D. Irvine at the University of Nottingham.

Author information

Authors and Affiliations

Authors

Contributions

S.R. conducted the initial syntheses and determined the synthetic routes as well as prepared the first draft of the manuscript. W.C.D. repeated and refined the syntheses; he also modified the reaction conditions and reagents for several steps to improve yields when conducting the reactions on a larger scale. He was also involved in manuscript preparation. N.R.T. supervised all of the work and prepared the final version of the manuscript.

Corresponding author

Correspondence to Neil R Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

1H NMR spectrum of L-Aha·HCl. (PDF 21 kb)

Supplementary Data 2

13C NMR spectrum of L-Aha·HCl. (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, S., Drewe, W. & Thomas, N. A concise and scalable route to L-azidohomoalanine. Nat Protoc 5, 1967–1973 (2010). https://doi.org/10.1038/nprot.2010.164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing