Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

MeltMADGE for mutation scanning of specific genes in population studies

Abstract

MeltMADGE reconfigures the mutation scanning process of denaturing gradient gel electrophoresis so that the independent variable is time rather than space and the dependent (denaturing) variable is temperature rather than concentration of chemical denaturant. Use of a thermal ramp enables the use of a homogeneous gel and therefore of high-density arrays of wells such as those of microplate array diagonal gel electrophoresis (MADGE). In this configuration, electrophoresis of products on 10–12 96-well meltMADGE gels can be conducted in a 1- to 2-liter tank in a 1- to 2-h run, enabling the scanning of a target amplicon in over 1,000 subjects simultaneously. Gels are read by imaging the fluorescence of UV-excited ethidium bromide, giving a simple, economical system for identifying rarer sequence variants in target genes; it is suitable for large-scale case-control or population studies and other comparable applications. Different amplicons with similar melting characteristics can also be combined in the same run.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microplate array diagonal gel electrophoresis.
Figure 2: Observed versus predicted Tm.
Figure 3: MeltMADGE apparatus.
Figure 4: MeltMADGE gel preparation and loading.
Figure 5: Artificial positive control in meltMADGE.
Figure 6: Images from two gels from a large-scale meltMADGE run.
Figure 7: Band patterns from a thermal ramp analysis of a SNP (using tracks in an H-PAGE gel).
Figure 8: A set of individual track images excised from a full meltMADGE gel image.
Figure 9: Phoretix software analysis of meltMADGE images.

Similar content being viewed by others

References

  1. Watson, J.D. & Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  2. Wetmur, J.G. & Davidson, N. Kinetics of renaturation of DNA. J Mol. Biol. 31, 349–370 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. Fischer, S.G. & Lerman, L.S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl Acad. Sci. USA 80, 1579–1583 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl Acad. Sci. USA 86, 2766–2770 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Underhill, P.A. et al. Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res. 7, 996–1005 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poland, D. Recursion relation generation of probability profiles for specific-sequence macromolecules with long-range correlations. Biopolymers 13, 1859–1871 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. Sheffield, V.C., Cox, D.R., Lerman, L.S. & Myers, R.M. Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl Acad. Sci. USA 86, 232–236 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Riesner, D. et al. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10, 377–389 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Gelfi, C., Cremonesi, L., Ferrari, M. & Righetti, P.G. Temperature-programmed capillary electrophoresis for detection of DNA point mutations. Biotechniques 21, 926–928, 930, 932 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Ekstrom, P.O., Khrapko, K., Li-Sucholeiki, X.C., Hunter, I.W. & Thilly, W.G. Analysis of mutational spectra by denaturing capillary electrophoresis. Nat. Protoc. 3, 1153–1166 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cariello, N.F., Swenberg, J.A., De, B.A. & Skopek, T.R. Analysis of mutations using PCR and denaturing gradient gel electrophoresis. Environ. Mol. Mutagen. 18, 249–254 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Wittwer, C.T., Reed, G.H., Gundry, C.N., Vandersteen, J.G. & Pryor, R.J. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin. Chem. 49, 853–860 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Wittwer, C.T. High-resolution DNA melting analysis: advancements and limitations. Hum. Mutat. 30, 857–859 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Day, I.N. & Humphries, S.E. Electrophoresis for genotyping: microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose. Anal. Biochem. 222, 389–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. O'Dell, S.D., Gaunt, T.R. & Day, I.N. SNP genotyping by combination of 192-well MADGE, ARMS and computerized gel image analysis. Biotechniques 29, 500–506 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Gaunt, T.R., Hinks, L.J., Rassoulian, H. & Day, I.N. Manual 768 or 384 well microplate gel 'dry' electrophoresis for PCR checking and SNP genotyping. Nucleic Acids Res. 31, e48 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen, X.H., O'Dell, S.D. & Day, I.N. Microplate array diagonal gel electrophoresis for cohort studies of microsatellite loci. Biotechniques 32, 1080–1082, 1084, 1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez, S., Chen, X.H. & Day, I.N. Typing dinucleotide repeat loci using microplate array diagonal gel electrophoresis: proof of principle. Electrophoresis 25, 975–979 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. O'Dell, S.D., Chen, X. & Day, I.N. Higher resolution microplate array diagonal gel electrophoresis: application to a multiallelic minisatellite. Hum. Mutat. 15, 565–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. O'Dell, S.D., Humphries, S.E. & Day, I.N. Rapid methods for population-scale analysis for gene polymorphisms: the ACE gene as an example. Br. Heart J. 73, 368–371 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bolla, M.K., Haddad, L., Humphries, S.E., Winder, A.F. & Day, I.N. High-throughput method for determination of apolipoprotein E genotypes with use of restriction digestion analysis by microplate array diagonal gel electrophoresis. Clin. Chem. 41, 1599–1604 (1995).

    CAS  PubMed  Google Scholar 

  22. Lee, W.K. et al. Identification of a common low density lipoprotein receptor mutation (C163Y) in the west of Scotland. J Med. Genet. 35, 573–578 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Dell, S.D., Humphries, S.E. & Day, I.N. PCR induction of a TaqI restriction site at any CpG dinucleotide using two mismatched primers (CpG-PCR). Genome Res. 6, 558–568 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Ye, S., Dhillon, S., Ke, X., Collins, A.R. & Day, I.N. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29, E88 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alharbi, K.K. et al. Mutation scanning by meltMADGE: validations using BRCA1 and LDLR, and demonstration of the potential to identify severe, moderate, silent, rare, and paucimorphic mutations in the general population. Genome Res. 15, 967–977 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alharbi, K.K. et al. Prevalence and functionality of paucimorphic and private MC4R mutations in a large, unselected European British population, scanned by meltMADGE. Hum. Mutat. 28, 294–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Metzker, M.L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Ng, S.B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lerman, L.S. & Silverstein, K. Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 155, 482–501 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Fixman, M. & Freire, J.J. Theory of DNA melting curves. Biopolymers 16, 2693–2704 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Steger, G. Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. Nucleic Acids Res. 22, 2760–2768 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support for meltMADGE development came from the UK Medical Research Council and from the Department of Health—UK National Genetics Reference Laboratory (Wessex). T.R.G. was a British Heart Foundation Intermediate Fellow. C.R.B. is funded by a Wellcome Trust 4-year Ph.D. studentship in Molecular, Genetic and Lifecourse Epidemiology (WT083431MA).

Author information

Authors and Affiliations

Authors

Contributions

All authors have seen, commented on and contributed to the finalization of the paper, and have contributed to the development of the approach.

Corresponding author

Correspondence to Ian N M Day.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alharbi, K., Aldahmesh, M., Gaunt, T. et al. MeltMADGE for mutation scanning of specific genes in population studies. Nat Protoc 5, 1800–1812 (2010). https://doi.org/10.1038/nprot.2010.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.136

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing