Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A 96-well-plate–based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing

Abstract

A major reason for bacterial persistence during chronic infections is the survival of bacteria within biofilm structures, which protect cells from environmental stresses, host immune responses and antimicrobial therapy. Thus, there is concern that laboratory methods developed to measure the antibiotic susceptibility of planktonic bacteria may not be relevant to chronic biofilm infections, and it has been suggested that alternative methods should test antibiotic susceptibility within a biofilm. In this paper, we describe a fast and reliable protocol for using 96-well microtiter plates for the formation of Pseudomonas aeruginosa biofilms; the method is easily adaptable for antimicrobial susceptibility testing. This method is based on bacterial viability staining in combination with automated confocal laser scanning microscopy. The procedure simplifies qualitative and quantitative evaluation of biofilms and has proven to be effective for standardized determination of antibiotic efficiency on P. aeruginosa biofilms. The protocol can be performed within 60 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Robustness of the PHLIP-calculated biofilm parameters.
Figure 3: Isopropanol treatment of biofilms as killing control.
Figure 4: Responsiveness of tobramycin-treated biofilms.
Figure 5: Application of biofilm susceptibility testing to two sputum samples.

Similar content being viewed by others

References

  1. Costerton, J.W., Stewart, P.S. & Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Ramsey, B.W. Management of pulmonary disease in patients with cystic fibrosis. N. Engl. J. Med. 335, 179–188 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Parsek, M.R. & Singh, P.K. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57, 677–701 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Mah, T.F. et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426, 306–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Moskowitz, S.M., Foster, J.M., Emerson, J. & Burns, J.L. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J. Clin. Microbiol. 42, 1915–1922 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nickel, J.C., Ruseska, I., Wright, J.B. & Costerton, J.W. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27, 619–624 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoyle, B.D. & Costerton, J.W. Bacterial resistance to antibiotics: the role of biofilms. Prog. Drug Res. 37, 91–105 (1991).

    CAS  PubMed  Google Scholar 

  8. Gilbert, P. & McBain, A.J. Biofilms: their impact on health and their recalcitrance toward biocides. Am. J. Infect. Control 29, 252–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Gilbert, P., Maira-Litran, T., McBain, A.J., Rickard, A.H. & Whyte, F.W. The physiology and collective recalcitrance of microbial biofilm communities. Adv. Microb. Physiol. 46, 202–256 (2002).

    PubMed  Google Scholar 

  10. Smith, A.L., Fiel, S.B., Mayer-Hamblett, N., Ramsey, B. & Burns, J.L. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest 123, 1495–1502 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Hall-Stoodley, L. & Stoodley, P. Evolving concepts in biofilm infections. Cell Microbiol. 11: 1034–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Worlitzsch, D. et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109, 317–325 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moskowitz, S.M., Foster, J.M., Emerson, J.C., Gibson, R.L. & Burns, J.L. Use of Pseudomonas biofilm susceptibilities to assign simulated antibiotic regimens for cystic fibrosis airway infection. J. Antimicrob. Chemother. 56, 879–886 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Keays, T. et al. A retrospective analysis of biofilm antibiotic susceptibility testing: a better predictor of clinical response in cystic fibrosis exacerbations. J. Cyst. Fibros. 8, 122–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Foweraker, J. Recent advances in the microbiology of respiratory tract infection in cystic fibrosis. Br. Med. Bull. 89, 93–110 (2009).

    Article  PubMed  Google Scholar 

  16. Ceri, H. et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37, 1771–1776 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sandoe, J.A., Wysome, J., West, A.P., Heritage, J. & Wilcox, M.H. Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms. J. Antimicrob. Chemother. 57, 767–770 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Brooun, A., Liu, S. & Lewis, K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 44, 640–646 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Kievit, T.R. et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 45, 1761–1770 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olson, M.E., Ceri, H., Morck, D.W., Buret, A.G. & Read, R.R. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can. J. Vet. Res. 66, 86–92 (2002).

    PubMed  PubMed Central  Google Scholar 

  21. Tre-Hardy, M., Vanderbist, F., Traore, H. & Devleeschouwer, M.J. In vitro activity of antibiotic combinations against Pseudomonas aeruginosa biofilm and planktonic cultures. Int. J. Antimicrob. Agents 31, 329–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Pierce, C.G. et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 3, 1494–1500 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Repp, K.K., Menor, S.A. & Pettit, R.K. Microplate Alamar blue assay for susceptibility testing of Candida albicans biofilms. Med. Mycol. 45, 603–607 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Ramage, G., Vande, W.K., Wickes, B.L. & Lopez-Ribot, J.L. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother. 45, 2475–2479 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, C.T., Yu, F.P., McFeters, G.A. & Stewart, P.S. Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Appl. Environ. Microbiol. 61, 2252–2256 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. McFeters, G.A., Pyle, B.H., Lisle, J.T. & Broadaway, S.C. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms. Symp. Ser. Soc. Appl. Microbiol. 85, 193S–200S (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Pitts, B., Hamilton, M.A., Zelver, N. & Stewart, P.S. A microtiter-plate screening method for biofilm disinfection and removal. J. Microbiol. Methods 54, 269–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Peeters, E., Nelis, H.J. & Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 72, 157–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. O'Toole, G.A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Biggerstaff, J.P. et al. New methodology for viability testing in environmental samples. Mol. Cell Probes 20, 141–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Falcioni, T., Papa, S. & Gasol, J.M. Evaluating the flow-cytometric nucleic acid double-staining protocol in realistic situations of planktonic bacterial death. Appl. Environ. Microbiol. 74, 1767–1779 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stocks, S.M. Mechanism and use of the commercially available viability stain, BacLight. Cytometry A 61, 189–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Boulos, L., Prevost, M., Barbeau, B., Coallier, J. & Desjardins, R. LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods 37, 77–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Hoerr, V., Ziebuhr, W., Kozitskaya, S., Katzowitsch, E. & Holzgrabe, U. Laser-induced fluorescence-capillary electrophoresis and fluorescence microplate reader measurement: two methods to quantify the effect of antibiotics. Anal. Chem. 79, 7510–7518 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Gillis, R.J. & Iglewski, B.H. Azithromycin retards Pseudomonas aeruginosa biofilm formation. J. Clin. Microbiol. 42, 5842–5845 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haagensen, J.A. et al. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J. Bacteriol. 189, 28–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hentzer, M. et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803–3815 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaneko, Y., Thoendel, M., Olakanmi, O., Britigan, B.E. & Singh, P.K. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest. 117, 877–888 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stewart, P.S. & Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Teitzel, G.M. & Parsek, M.R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69, 2313–2320 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pamp, S.J., Sternberg, C. & Tolker-Nielsen, T. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 75, 90–103 (2009).

    Article  PubMed  Google Scholar 

  42. Kirov, S.M. et al. Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 153, 3264–3274 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Harrison, J.J. et al. The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol. Proced. Online 8, 194–215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Müsken, M., DiFiore, S., Dötsch, A., Fischer, R. & Häussler, S. Genetic determinants of Pseudomonas aeruginosa biofilm establishment. Microbiology 156, 431–441 (2010).

    Article  PubMed  Google Scholar 

  45. Liberati, N.T. et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103, 2833–2838 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mueller, L.N., de Brouwer, J.F., Almeida, J.S., Stal, L.J. & Xavier, J.B. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC. Ecol. 6, 1 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Merod, R.T., Warren, J.E., McCaslin, H. & Wuertz, S. Toward automated analysis of biofilm architecture: bias caused by extraneous confocal laser scanning microscopy images. Appl. Environ. Microbiol. 73, 4922–4930 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoffman, L.R. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436, 1171–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Suerbaum for providing the clinical P. aeruginosa strains, M. Pletz for sputum samples and L. Szekely and his group for help and assistance in the microscopic facility at the Karolinska Institute. M.M. was supported by the International Research Training Group 1273 funded by the German Research Foundation (DFG). Financial support from Mukoviszidose e.V. and from Helmholtz-Gemeinschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.M., S.D.F., U.R. and S.H. designed the study. M.M. and S.D.F. performed the experiments, M.M. and S.H. analyzed the data, S.D.F. gave technical support, and M.M. and S.H. wrote the paper.

Corresponding author

Correspondence to Susanne Häussler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1s

Visualization of the image processing procedure. (a) Original, plus (b) Background-subtracted, (c) Otsu-thresholded and (d) Outliers-removed images of (1) Syto9 fluorescence and (2) PI fluorescence as well as a (3) Colored overlay of both fluorescent images from a biofilm stack of the clinical isolate 5520 treated with 32 µg ml-1 ceftazidime (Syto9=blue, PI=yellow, overlap=white). (PDF 511 kb)

Supplementary Figure 2s

Comparison of two antibiotic treated PA14 biofilms. Individual pseudocolor merged slices of processed image stacks from PA14 biofilms treated with (a) 2 µg ml-1 and (b) 512 µg ml-1 tobramycin, starting from plane 0 (plastic surface) to plane 14 with a spacing distance of 3 µm (Syto9=blue, PI=yellow, overlap=white). (PDF 738 kb)

Supplementary Figure 3s

Responsiveness of the meropenem-treated biofilms. Distribution of the PI stained (dark), the co-localized (hatched) and the Syto9 stained (light) biovolume and CFU counts (solid white line) of PA14 and 5 clinical strains exposed to increasing concentrations of meropenem. The black dotted line marks the 80 % threshold of PI (and co-localized) fluorescence. Biovolume data are mean values of three independent replicates. The overall SD for the green, the co-localized and the red fraction are: PA14 (4.5 % / 4.9 % / 3.9 %), 5497 (6.6 % / 3.0 % / 6.7 %), 5520 (4.4 % / 3.4 % / 5.3 %), 5522 (4.0 % / 4.0 % / 3.5 %), 5524 (4.0 % / 3.7 % / 4.6 %) and 5529 (4.8 % / 2.7 % / 4.4 %). (PDF 320 kb)

Supplementary Figure 4s

Responsiveness of the ceftazidime-treated biofilms. Distribution of the PI stained (dark), the co-localized (hatched) and the Syto9 stained (light) biovolume and CFU counts (solid white line) of PA14 and 5 clinical strains exposed to increasing concentrations of ceftazidime. The black dotted line marks the 80 % threshold of PI (and co-localized) fluorescence. Biovolume data are mean values of three independent replicates. The overall SD for the green, the co-localized and the red fraction are: PA14 (3.5 % / 4.0 % / 2.2 %), 5497 (6.2 % / 3.4 % / 7.4 %), 5520 (5.5 % / 3.0 % / 7.0 %), 5522 (2.7 % / 3.4 % / 2.3 %), 5524 (6.5 % / 3.0 % / 5.3 %) and 5529 (6.1 % / 3.1 % / 5.9 %). (PDF 322 kb)

Supplementary Figure 5s

Responsiveness of the ciprofloxacin-treated biofilms. Distribution of the PI stained (dark), the co-localized (hatched) and the Syto9 stained (light) biovolume and CFU counts (solid white line) of PA14 and 5 clinical strains exposed to increasing concentrations of ciprofloxacin. The black dotted line marks the 80 % threshold of PI (and co-localized) fluorescence. Biovolume data are mean values of three independent replicates. The overall SD for the green, the co-localized and the red fraction are: PA14 (4.3 % / 3.5 % / 2.5 %), 5497 (2.4 % / 4.7 % / 5.6 %), 5520 (6.3 % / 3.4 % / 7.2 %), 5522 (4.6 % / 3.9 % / 4.0 %), 5524 (7.1 % / 4.0 % / 5.0 %) and 5529 (4.9 % / 3.2 % / 6.9 %). (PDF 315 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müsken, M., Di Fiore, S., Römling, U. et al. A 96-well-plate–based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nat Protoc 5, 1460–1469 (2010). https://doi.org/10.1038/nprot.2010.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.110

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology