Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Derivation and characterization of haploid embryonic stem cell cultures in medaka fish

Abstract

Embryonic stem (ES) cells are pluripotent cells capable of differentiation into various cell types. Haploid ES cells elegantly combine the advantages of haploidy and pluripotency and offer a unique in vitro system for genetic analyses of molecular, cellular and developmental events in various cell lineages. Our recent success in generating haploid ES cell lines from gynogenetic embryos of the medaka fish suggests that haploidy can support ES cell derivation and maintenance in a vertebrate. In this study, we present a step-by-step protocol for derivation and characterization of medaka haploid ES cells. We have used this procedure to produce three haploid ES cell lines from five primary cultures. It takes about 15 weeks to generate stable cultures, 5–8 weeks to obtain pure haploid cells and 5–6 weeks to characterize ES cells in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Injection needle and equipment setup for cell transplantation system.
Figure 3: Pluripotency of haploid ES cells.
Figure 4: Derivation of medaka haploid ES cell cultures.

Similar content being viewed by others

References

  1. Nishikawa, S., Jakt, L.M. & Era, T. Embryonic stem-cell culture as a tool for developmental cell biology. Nat. Rev. Mol. Cell Biol. 8, 502–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  Google Scholar 

  3. Alvarez, M.C., Bejar, J., Chen, S. & Hong, Y. Fish ES cells and applications to biotechnology. Mar. Biotechnol. 9, 117–127 (2007).

    Article  CAS  Google Scholar 

  4. Muller, U. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech. Dev. 82, 3–21 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Trombly, M.I., Su, H. & Wang, X. A genetic screen for components of the mammalian RNA interference pathway in Bloom-deficient mouse embryonic stem cells. Nucleic Acids Res. 37, e34 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kotecki, M., Reddy, P.S. & Cochran, B.H. Isolation and characterization of a near-haploid human cell line. Exp. Cell Res. 252, 273–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Carette, J.E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Debec, A. Haploid cell cultures of Drosophila melanogaster. Nature 274, 255–256 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Debec, A. Evolution of karyotype in haploid cell lines of Drosophila melanogaster. Exp. Cell Res. 151, 236–246 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Philippe, C. & Landureau, J.C. Culture of cockroach embryonic cells and hemocytes of parthenogenic origin. Maintainance in vitro of haploid and aneuploid forms. Exp. Cell Res. 96, 287–296 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Freed, J.J. & Mezger-Freed, L. Stable haploid cultured cell lines from frog embryos. Proc. Natl. Acad. Sci. USA 65, 337–344 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaufman, M.H., Robertson, E.J., Handyside, A.H. & Evans, M.J. Establishment of pluripotential cell lines from haploid mouse embryos. J. Embryol. Exp. Morphol. 73, 249–261 (1983).

    CAS  PubMed  Google Scholar 

  13. Andersson, B.S. et al. Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genet. Cytogenet. 24, 335–343 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Kawase, E. et al. Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int. J. Dev. Biol. 38, 385–390 (1994).

    CAS  PubMed  Google Scholar 

  15. Wittbrodt, J., Shima, A. & Schartl, M. Medaka–a model organism from the far East. Nat. Rev. Genet. 3, 53–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Hong, Y., Winkler, C. & Schartl, M. Efficiency of cell culture derivation from blastula embryos and of chimera formation in the medaka (Oryzias latipes) depends on donor genotype and passage number. Dev. Genes. Evol. 208, 595–602 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Furutani-Seiki, M. et al. A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes. Mech. Dev. 121, 647–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Hong, Y. & Schartl, M. Establishment and growth responses of early medaka fish (Oryzias latipes) embryonic cells in feeder layer-free cultures. Mol. Mar. Biol. Biotechnol. 5, 12 (1996).

    Google Scholar 

  19. Hong, Y., Winkler, C. & Schartl, M. Pluripotency and differentiation of embryonic stem cell lines from the medaka fish (Oryzias latipes). Mech. Dev. 60, 33–44 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Hong, Y., Winkler, C. & Schartl, M. Production of medaka fish chimeras from a stable embryonic stem cell line. Proc. Natl. Acad. Sci. USA 95, 3679–3684 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong, Y. et al. Establishment of a normal medaka fish spermatogonial cell line capable of sperm production in vitro. Proc. Natl. Acad. Sci. USA 101, 8011–8016 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yi, M., Hong, N. & Hong, Y. Generation of medaka fish haploid embryonic stem cells. Science 326, 430–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish Danio rerio (University of Oregon Press, Eugene, OR, 1995).

  24. Araki, K., Okamoto, H., Graveson, A.C., Nakayama, I. & Nagoya, H. Analysis of haploid development based on expression patterns of developmental genes in the medaka Oryzias latipes. Dev. Growth Differ. 43, 591–599 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Hyodo-Taguchi, Y. & Egami, N. Establishment of inbred strains of the medaka Oryzias latipes and the usefulness of the strains for biomedical research. Zool. Sci. 2, 305–316 (1985).

    Google Scholar 

  26. Pelegri, F. & Schulte-Merker, S. A gynogenesis-based screen for maternal-effect genes in the zebrafish, Danio rerio. Methods Cell Biol. 60, 1–20 (1999).

    CAS  PubMed  Google Scholar 

  27. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan, L. & Collodi, P. Zebrafish embryonic stem cells. Methods Enzymol. 418, 64–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wakamatsu, Y., Ozato, K. & Sasado, T. Establishment of a pluripotent cell line derived from a medaka (Oryzias latipes) blastula embryo. Mol. Mar. Biol. Biotechnol. 3, 185–191 (1994).

    CAS  PubMed  Google Scholar 

  31. Iwamatsu, T. Stages of normal development in the medaka Oryzias latipes. Mech. Dev. 121, 605–618 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Yu, X., Zhou, T., Li, Y., Li, K. & Zhou, M. Chromosomes of Chinese Fresh-Water Fishes (Science Press, Beijing, 1989).

  33. Pera, M.F., Reubinoff, B. & Trounson, A. Human embryonic stem cells. J. Cell Sci. 113, 5–10 (2000).

    CAS  PubMed  Google Scholar 

  34. Hong, Y. Rapid chromosome preparation from single fish embryos. Freshw. Fish. 1, 35–36 (1987).

    Google Scholar 

  35. D'Urso, V., Collodoro, A., Mattioli, E., Giordano, A. & Bagella, L. Cytometry and DNA ploidy: clinical uses and molecular perspective in gastric and lung cancer. J. Cell Physiol. 222, 532–539 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Deng for fish breeding. This work was supported by the Biomedical Research Council of Singapore (R-08-1-21-19-585 and SBIC-SSCC C-002-2007) and by the Lee Hiok Kwee donation from the National University of Singapore (R-154-000-153-720).

Author information

Authors and Affiliations

Authors

Contributions

M.Y. designed and carried out experiments, analyzed data and wrote the paper. N.H. carried out experiments. Y.H. supervised the project, designed experiments and wrote and approved the final paper.

Corresponding author

Correspondence to Yunhan Hong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Genes and primers used for RT-PCR analyses (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, M., Hong, N. & Hong, Y. Derivation and characterization of haploid embryonic stem cell cultures in medaka fish. Nat Protoc 5, 1418–1430 (2010). https://doi.org/10.1038/nprot.2010.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.104

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing