Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays

Abstract

Engineered zinc-finger nucleases (ZFNs) form the basis of a broadly applicable method for targeted, efficient modification of eukaryotic genomes. In recent work, we described OPEN (oligomerized pool engineering), an 'open-source,' combinatorial selection-based method for engineering zinc-finger arrays that function well as ZFNs. We have also shown in direct comparisons that the OPEN method has a higher success rate than previously described 'modular-assembly' methods for engineering ZFNs. OPEN selections are carried out in Escherichia coli using a bacterial two-hybrid system and do not require specialized equipment. Here we provide a detailed protocol for carrying out OPEN to engineer zinc-finger arrays that have a high probability of functioning as ZFNs. Using OPEN, researchers can generate multiple, customized ZFNs in 8 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zinc-finger nucleases.
Figure 2: Oligomerized pool engineering (OPEN)-selection method for engineering multi-finger arrays.
Figure 3: Construction of F′-based reporter episomes required for B2H selection strains.
Figure 4: Strategy for designing binding-site oligonucleotides.
Figure 5: Schematic overview of zinc-finger library construction.
Figure 6: Schematic depicting triplicate serial dilution and triplicate spotting of dilutions on agar plates.
Figure 7: Schematic illustrating a method for pouring gradient selection plates.
Figure 8: Appearance of a typical gradient selection plate with a successful OPEN selection.

Similar content being viewed by others

References

  1. Cathomen, T. & Joung, J.K. Zinc-finger nucleases: the next generation emerges. Mol. Ther. 16, 1200–1207 (2008).

    Article  CAS  Google Scholar 

  2. Porteus, M.H. & Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973 (2005).

    Article  CAS  Google Scholar 

  3. Durai, S. et al. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978–5990 (2005).

    Article  CAS  Google Scholar 

  4. Carroll, D. Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. 15, 1463–1468 (2008).

    Article  CAS  Google Scholar 

  5. Wu, J., Kandavelou, K. & Chandrasegaran, S. Custom-designed zinc finger nucleases: what is next? Cell Mol. Life Sci. 64, 2933–2944 (2007).

    Article  CAS  Google Scholar 

  6. Camenisch, T.D., Brilliant, M.H. & Segal, D.J. Critical parameters for genome editing using zinc finger nucleases. Mini. Rev. Med. Chem. 8, 669–676 (2008).

    Article  CAS  Google Scholar 

  7. Kim, Y.G., Shi, Y., Berg, J.M. & Chandrasegaran, S. Site-specific cleavage of DNA-RNA hybrids by zinc finger/FokI cleavage domain fusions. Gene 203, 43–49 (1997).

    Article  CAS  Google Scholar 

  8. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  Google Scholar 

  9. Mani, M., Smith, J., Kandavelou, K., Berg, J.M. & Chandrasegaran, S. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem. Biophys. Res. Commun. 334, 1191–1197 (2005).

    Article  CAS  Google Scholar 

  10. Smith, J. et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369 (2000).

    Article  CAS  Google Scholar 

  11. Maeder, M.L. et al. Rapid 'open-source' engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell. 31, 294–301 (2008).

    Article  CAS  Google Scholar 

  12. Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    Article  CAS  Google Scholar 

  13. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Santiago, Y. et al. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 105, 5809–5814 (2008).

    Article  CAS  Google Scholar 

  15. Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

    Article  CAS  Google Scholar 

  16. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  CAS  Google Scholar 

  17. Perez, E.E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808–816 (2008).

    Article  CAS  Google Scholar 

  18. Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 26, 702–708 (2008).

    Article  CAS  Google Scholar 

  19. Meng, X., Noyes, M.B., Zhu, L.J., Lawson, N.D. & Wolfe, S.A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol. 26, 695–701 (2008).

    Article  CAS  Google Scholar 

  20. Foley, J.E. et al. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by oligomerized pool engineering. PLoS ONE 4, e4348 (2009).

    Article  Google Scholar 

  21. Lloyd, A., Plaisier, C.L., Carroll, D. & Drews, G.N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 2232–2237 (2005).

    Article  CAS  Google Scholar 

  22. Wright, D.A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705 (2005).

    Article  CAS  Google Scholar 

  23. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  Google Scholar 

  24. Moehle, E.A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl. Acad. Sci. USA 104, 3055–3060 (2007).

    Article  CAS  Google Scholar 

  25. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  Google Scholar 

  26. Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J.K. & Carroll, D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172, 2391–2403 (2006).

    Article  CAS  Google Scholar 

  27. Beumer, K.J. et al. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 105, 19821–19826 (2008).

    Article  CAS  Google Scholar 

  28. Morton, J., Davis, M.W., Jorgensen, E.M. & Carroll, D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc. Natl. Acad. Sci. USA 103, 16370–16375 (2006).

    Article  CAS  Google Scholar 

  29. Cai, C.Q. et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant. Mol. Biol. 69, 699–709 (2009).

    Article  CAS  Google Scholar 

  30. Townsend, J.A. et al. High frequency modification of plant genes using engineered zinc finger nucleases. Nature 459, 442–445 (2009).

    Article  CAS  Google Scholar 

  31. Hurt, J.A., Thibodeau, S.A., Hirsh, A.S., Pabo, C.O. & Joung, J.K. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc. Natl. Acad. Sci. USA 100, 12271–12276 (2003).

    Article  CAS  Google Scholar 

  32. Cornu, T.I. et al. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol. Ther. 16, 352–358 (2008).

    Article  CAS  Google Scholar 

  33. Pruett-Miller, S.M., Connelly, J.P., Maeder, M.L., Joung, J.K. & Porteus, M.H. Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol. Ther. 16, 707–717 (2008).

    Article  CAS  Google Scholar 

  34. Fu, F. et al. Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res. 37, D279–D283 (2009).

    Article  CAS  Google Scholar 

  35. Sander, J.D., Zaback, P., Joung, J.K., Voytas, D.F. & Dobbs, D. Zinc finger targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res. 35, W599–W605 (2007).

    Article  Google Scholar 

  36. Porteus, M.H. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. 13, 438–446 (2006).

    Article  CAS  Google Scholar 

  37. Alwin, S. et al. Custom zinc-finger nucleases for use in human cells. Mol. Ther. 12, 610–617 (2005).

    Article  CAS  Google Scholar 

  38. Mani, M., Kandavelou, K., Dy, F.J., Durai, S. & Chandrasegaran, S. Design, engineering, and characterization of zinc finger nucleases. Biochem. Biophys. Res. Commun. 335, 447–457 (2005).

    Article  CAS  Google Scholar 

  39. Segal, D.J. et al. Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry 42, 2137–2148 (2003).

    Article  CAS  Google Scholar 

  40. Segal, D.J. The use of zinc finger peptides to study the role of specific factor binding sites in the chromatin environment. Methods 26, 76–83 (2002).

    Article  CAS  Google Scholar 

  41. Segal, D.J. & Barbas, C.F. III . Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Curr. Opin. Biotechnol. 12, 632–637 (2001).

    Article  CAS  Google Scholar 

  42. Mandell, J.G. & Barbas, C.F. III. Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34, W516–W523 (2006).

    Article  CAS  Google Scholar 

  43. Beerli, R.R. & Barbas, C.F. III. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20, 135–141 (2002).

    Article  CAS  Google Scholar 

  44. Bae, K.H. et al. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat. Biotechnol. 21, 275–280 (2003).

    Article  CAS  Google Scholar 

  45. Liu, Q., Xia, Z., Zhong, X. & Case, C.C. Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J. Biol. Chem. 277, 3850–3856 (2002).

    Article  CAS  Google Scholar 

  46. Ramirez, C.L. et al. Unexpected failure rates for modular assembly of engineered zinc-fingers. Nat. Methods 5, 374–375 (2008).

    Article  CAS  Google Scholar 

  47. Wolfe, S.A., Grant, R.A., Elrod-Erickson, M. & Pabo, C.O. Beyond the 'recognition code': structures of two Cys2His2 zinc finger/TATA box complexes. Structure 9, 717–723 (2001).

    Article  CAS  Google Scholar 

  48. Wolfe, S.A., Greisman, H.A., Ramm, E.I. & Pabo, C.O. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J. Mol. Biol. 285, 1917–1934 (1999).

    Article  CAS  Google Scholar 

  49. Elrod-Erickson, M., Rould, M.A., Nekludova, L. & Pabo, C.O. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure 4, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  50. Isalan, M., Klug, A. & Choo, Y. Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry 37, 12026–12033 (1998).

    Article  CAS  Google Scholar 

  51. Isalan, M., Choo, Y. & Klug, A. Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc. Natl. Acad. Sci. USA 94, 5617–5621 (1997).

    Article  CAS  Google Scholar 

  52. Pearson, H. The fate of fingers. Nature 455, 160–164 (2008).

    Article  CAS  Google Scholar 

  53. Tan, S. et al. Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc. Natl. Acad. Sci. USA 100, 11997–12002 (2003).

    Article  CAS  Google Scholar 

  54. Blancafort, P. et al. Genetic reprogramming of tumor cells by zinc finger transcription factors. Proc. Natl. Acad. Sci. USA 102, 11716–11721 (2005).

    Article  CAS  Google Scholar 

  55. Blancafort, P., Magnenat, L. & Barbas, C.F. Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol. 21, 269–274 (2003).

    Article  CAS  Google Scholar 

  56. Stege, J.T., Guan, X., Ho, T., Beachy, R.N. & Barbas, C.F. III. Controlling gene expression in plants using synthetic zinc finger transcription factors. Plant J. 32, 1077–1086 (2002).

    Article  CAS  Google Scholar 

  57. Ordiz, M.I., Barbas, C.F. III. & Beachy, R.N. Regulation of transgene expression in plants with polydactyl zinc finger transcription factors. Proc. Natl. Acad. Sci. USA 99, 13290–13295 (2002).

    Article  CAS  Google Scholar 

  58. Guan, X. et al. Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proc. Natl. Acad. Sci. USA 99, 13296–13301 (2002).

    Article  CAS  Google Scholar 

  59. Beerli, R.R., Dreier, B. & Barbas, C.F. III. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

    Article  CAS  Google Scholar 

  60. Beerli, R.R., Segal, D.J., Dreier, B. & Barbas, C.F. III. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl. Acad. Sci. USA 95, 14628–14633 (1998).

    Article  CAS  Google Scholar 

  61. Gordley, R.M., Gersbach, C.A. & Barbas, C.F. III. Synthesis of programmable integrases. Proc. Natl. Acad. Sci. USA 106, 5053–5058 (2009).

    Article  CAS  Google Scholar 

  62. Blancafort, P. et al. Modulation of drug resistance by artificial transcription factors. Mol. Cancer Ther. 7, 688–697 (2008).

    Article  CAS  Google Scholar 

  63. Nomura, W. & Barbas, C.F. III. In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase. J. Am. Chem. Soc. 129, 8676–8677 (2007).

    Article  CAS  Google Scholar 

  64. Gordley, R.M., Smith, J.D., Graslund, T. & Barbas, C.F. III. Evolution of programmable zinc finger-recombinases with activity in human cells. J. Mol. Biol. 367, 802–813 (2007).

    Article  CAS  Google Scholar 

  65. Eberhardy, S.R. et al. Inhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site. J. Virol. 80, 2873–2883 (2006).

    Article  CAS  Google Scholar 

  66. Tan, W., Dong, Z., Wilkinson, T.A., Barbas, C.F. III. & Chow, S.A. Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. J. Virol. 80, 1939–1948 (2006).

    Article  CAS  Google Scholar 

  67. Rebar, E.J. et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat. Med. 8, 1427–1432 (2002).

    Article  CAS  Google Scholar 

  68. Liang, Y. et al. Activation of vascular endothelial growth factor A transcription in tumorigenic glioblastoma cell lines by an enhancer with cell type-specific DNase I accessibility. J. Biol. Chem. 277, 20087–20094 (2002).

    Article  CAS  Google Scholar 

  69. Liu, P.Q. et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 276, 11323–11334 (2001).

    Article  CAS  Google Scholar 

  70. Zhang, L. et al. Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J. Biol. Chem. 275, 33850–33860 (2000).

    Article  CAS  Google Scholar 

  71. Handel, E.M., Alwin, S. & Cathomen, T. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol. Ther. 17, 104–111 (2009).

    Article  Google Scholar 

  72. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).

    Article  CAS  Google Scholar 

  73. Joung, J.K., Ramm, E.I. & Pabo, C.O. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Natl. Acad. Sci. USA 97, 7382–7387 (2000).

    Article  CAS  Google Scholar 

  74. Whipple, F.W. Genetic analysis of prokaryotic and eukaryotic DNA-binding proteins in Escherichia coli. Nucleic Acids Res. 26, 3700–3706 (1998).

    Article  CAS  Google Scholar 

  75. Thibodeau-Beganny, S. & Joung, J.K. Engineering cys2his2 zinc finger domains using a bacterial cell-based two-hybrid selection system. Methods Mol. Biol. 408, 317–334 (2007).

    Article  CAS  Google Scholar 

  76. Wright, D.A. et al. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat. Protoc. 1, 1637–1652 (2006).

    Article  Google Scholar 

  77. Szczepek, M. et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat. Biotechnol. 25, 786–793 (2007).

    Article  CAS  Google Scholar 

  78. Shukla, V.K. et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437–441 (2009).

    Article  CAS  Google Scholar 

  79. Thibodeau, S.A., Fang, R. & Joung, J.K. High-throughput beta-galactosidase assay for bacterial cell-based reporter systems. Biotechniques 36, 410–415 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Eichtinger, T. Jiang and S. Pruett-Miller for technical assistance and M. Porteus for helpful discussions during early stages of protocol development. M.L.M., S.T.-B. and J.K.J. are supported by grants from the National Institutes of Health (R01 GM069906, R24 GM078369, R21 RR024189) and the MGH Pathology Service. D.F.V. is supported by the National Science Foundation (DBI 0501678). J.D.S. is supported by a Pioneer-Hi-Bred International 2008 Graduate Fellowship, the National Institutes of Health (R33 GM066387) and the Iowa State University CIAG. Note added in proof Shukla et al.78 recently demonstrated ZFN-enhanced gene targeting of an endogenous plant gene.

Author information

Authors and Affiliations

Authors

Contributions

M.L.M., S.T.-B., and J.K.J. developed the OPEN selection procedure. J.D.S. and D.F.V. developed the ZiFiT software. M.L.M., S.T.-B., J.D.S., D.F.V., and J.K.J. wrote the paper.

Corresponding author

Correspondence to J Keith Joung.

Supplementary information

Supplementary Fig. 1

Full sequence of reporter plasmid pKJ1712 (8723 bp) (PDF 28 kb)

Supplementary Fig. 2

Full sequence of the B2H vector pBR-UV5-GP-FD2 (3508 bp) (PDF 24 kb)

Supplementary Fig. 3

Full sequence of the pAC-alphaGal4 vector (3428 bp) (PDF 22 kb)

Supplementary Fig. 4

Gel electrophoresis of restriction digested plasmid pKJ1712 with and without cloned target binding site oligonucleotides EcoRI/HindIII digestions of plasmid pKJ1712 with (lane 1) and without (lane 2) target binding site oligonucleotides inserted were run on a 5% polyacrylamide gel and visualized with UV light following ethidium bromide staining. (PDF 27 kb)

Supplementary Fig. 5

Sequence of EcoRI-SalI segment of the binding site reporter (PDF 15 kb)

Supplementary Fig. 6

Sequence of XbaI-BamHI fragment encoding a generic threefinger array (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeder, M., Thibodeau-Beganny, S., Sander, J. et al. Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc 4, 1471–1501 (2009). https://doi.org/10.1038/nprot.2009.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.98

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing