Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Photocrosslinking of glycoconjugates using metabolically incorporated diazirine-containing sugars

Abstract

Transient interactions among glycoconjugates underlie developmental, immunological and metastatic recognition. Glycan-mediated interactions have low binding affinities and rapid dissociation rates. As a result, these complexes dissociate when removed from their cellular context, complicating characterization. Photocrosslinkers introduce a covalent bond between glycoconjugates and their binding partners, allowing physiologically relevant complexes to be isolated. This protocol describes metabolic incorporation of a diazirine photocrosslinker into sialic acids in cellular glycoconjugates. Subsequent irradiation results in photocrosslinking of sialic acid to neighboring macromolecules, providing a photochemical 'snapshot' of binding events. As photocrosslinking sugars are light activated, these reagents have the potential to be used for temporally and/or spatially restricted crosslinking. We provide instructions for the synthesis of photocrosslinking sugar precursors, cell culture for metabolic incorporation, flow cytometry to evaluate metabolic incorporation, photoirradiation and analysis of the crosslinked complexes. Synthesis of photocrosslinking sugars requires 4–6 d, and photocrosslinking experiments can be completed in an additional 6 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of reagents for metabolic labeling of cell-surface glycoconjugates.
Figure 2: Metabolic incorporation of photocrosslinking sialic acid.
Figure 3: Optimal ManNDAz concentration for maximizing cell growth and photocrosslinking sugar incorporation.
Figure 4: Strategy for identification of glycoconjugate interaction partners using photocrosslinking sugars.
Figure 5: Cell surface display of SiaDAz measured in UDP-GlcNAc 2-epimerase-deficient cells.
Figure 6: SiaDAz-mediated photocrosslinking of CD22 oligomers.

Similar content being viewed by others

References

  1. Haltiwanger, R.S. & Lowe, J.B. Role of glycosylation in development. Annu. Rev. Biochem. 73, 491–537 (2004).

    Article  CAS  Google Scholar 

  2. van Kooyk, Y. & Rabinovich, G.A. Protein–glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Vollmers, H.P. & Brandlein, S. Tumors: too sweet to remember? Mol. Cancer 6, 78 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Campbell, C.T., Sampathkumar, S.G. & Yarema, K.J. Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol. Biosyst. 3, 187–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Dube, D.H. & Bertozzi, C.R. Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7, 616–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka, Y. & Kohler, J.J. Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 130, 3278–3279 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Han, S., Collins, B.E., Bengtson, P. & Paulson, J.C. Homomultimeric complexes of CD22 in B cells revealed by protein–glycan cross-linking. Nat. Chem. Biol. 1, 93–97 (2005).

    Article  CAS  Google Scholar 

  8. Yu, H. & Chen, X. Carbohydrate post-glycosylational modifications. Org. Biomol. Chem. 5, 865–872 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collins, B.E. et al. High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J. Immunol. 177, 2994–3003 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Kelm, S., Gerlach, J., Brossmer, R., Danzer, C.-P. & Nitschke, L. The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel CD22-specific inhibitor compound. J. Exp. Med. 195, 1207–1213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kelm, S. et al. Functional groups of sialic acids involved in binding siglecs (sialoadhesins) deduced from interactions with synthetic analogues. Eur. J. Biochem. 255, 663–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Collins, B.E., Fralich, T.J., Itonori, S., Ichikawa, Y., Schnaar, R.L . Conversion of cellular sialic acid expression from N-acetyl to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: inhibition of myelin-associated glycoprotein binding to neural cells. Glycobiology 10, 11–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Varki, A. Radioactive tracer techniques in the sequencing of glycoprotein oligosaccharides. FASEB J. 5, 226–235 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Aich, U. et al. Regioisomeric SCFA attachment to hexosamines separates metabolic flux from cytotoxicity and MUC1 suppression. ACS Chem. Biol. 3, 230–240 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, W., Chen, T.L., Vertel, B.M. & Colley, K.J. The CMP-sialic acid transporter is localized in the medial-trans Golgi and possesses two specific endoplasmic reticulum export motifs in its carboxyl-terminal cytoplasmic tail. J. Biol. Chem. 281, 31106–31118 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Kayser, H. et al. Biosynthesis of a nonphysiological sialic-acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992).

    CAS  PubMed  Google Scholar 

  17. Jacobs, C.L. et al. Substrate specificity of the sialic acid biosynthetic pathway. Biochemistry 40, 12864–12874 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Dafik, L., d'Alarcao, M. & Kumar, K. Fluorination of mammalian cell surfaces via the sialic acid biosynthetic pathway. Bioorg. Med. Chem. Lett. 18, 5945–5947 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pon, R.A., Biggs, N.J. & Jennings, H.J. Polysialic acid bioengineering of neuronal cells by N-acyl sialic acid precursor treatment. Glycobiology 17, 249–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Sampathkumar, S.G., Li, A.V., Jones, M.B., Sun, Z. & Yarema, K.J. Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology. Nat. Chem. Biol. 2, 149–152 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Luchansky, S.J. & Bertozzi, C.R. Azido sialic acids can modulate cell-surface interactions. Chembiochem 5, 1706–1709 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Horstkorte, R., Rau, K., Laabs, S., Danker, K. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid leads to increased calcium influx from intracellular compartments and promotes differentiation of HL60 cells. FEBS Lett. 571, 99–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Horstkorte, R., Rau, K., Reutter, W., Nohring, S. & Lucka, L. Increased expression of the selectin ligand sialyl-Lewis(x) by biochemical engineering of sialic acids. Exp. Cell. Res. 295, 549–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Luchansky, S.J. et al. Constructing azide-labeled cell surfaces using polysaccharide biosynthetic pathways. Methods Enzymol. 362, 249–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  Google Scholar 

  26. Schmidt, C., Stehling, P., Schnitzer, J., Reutter, W. & Horstkorte, R. Biochemical engineering of neural cell surfaces by the synthetic N-propanoyl-substituted neuraminic acid precursor. J. Biol. Chem. 273, 19146–19152 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Wieser, J.R., Heisner, A., Stehling, P., Oesch, F. & Reutter, W. In vivo modulated N-acyl side chain of N-acetylneuraminic acid modulates the cell contact-dependent inhibition of growth. FEBS Lett. 395, 170–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Chefalo, P., Pan, Y., Nagy, N., Guo, Z. & Harding, C.V. Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine. Biochemistry 45, 3733–3739 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oetke, C. et al. Versatile biosynthetic engineering of sialic acid in living cells using synthetic sialic acid analogues. J. Biol. Chem. 277, 6688–6695 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Luchansky, S.J., Goon, S. & Bertozzi, C.R. Expanding the diversity of unnatural cell-surface sialic acids. Chembiochem 5, 371–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Oetke, C. et al. Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells. Eur. J. Biochem. 268, 4553–4561 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Keppler, O.T. et al. UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284, 1372–1376 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Kikuchi, K. & Tsuiki, S. Purification and properties of UDP-N-acetylglucosamine 2′-epimerase from rat liver. Biochim. Biophys. Acta. 327, 193–206 (1973).

    Article  CAS  PubMed  Google Scholar 

  34. Schwarzkopf, M. et al. Sialylation is essential for early development in mice. Proc. Natl. Acad. Sci. USA 99, 5267–5270 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Ghosh, S. & Roseman, S. The sialic acids. V. N-Acyl-D-glucosamine 2-epimerase. J. Biol. Chem. 240, 1531–1536 (1965).

    CAS  PubMed  Google Scholar 

  36. Maru, I., Ohta, Y., Murata, K. & Tsukada, Y. Molecular cloning and identification of N-acyl-D-glucosamine 2-epimerase from porcine kidney as a renin-binding protein. J. Biol. Chem. 271, 16294–16299 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi, S. et al. Human renin-binding protein is the enzyme N-acetyl-D-glucosamine 2-epimerase. J. Biochem. 125, 348–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka, Y., Bond, M.R. & Kohler, J.J. Photocrosslinkers illuminate interactions in living cells. Mol. BioSyst. 4, 473–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Blencowe, A. & Hayes, W. Development and application of diazirines in biological and synthetic macromolecular systems. Soft Matter 1, 178–205 (2005).

    Article  CAS  Google Scholar 

  40. Wittelsberger, A., Thomas, B.E., Mierke, D.F. & Rosenblatt, M. Methionine acts as a 'magnet' in photoaffinity crosslinking experiments. FEBS Lett. 580, 1872–1876 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Church, R. & Weiss, M. Diazirines. II. Synthesis and properties of small functionalized diazirine molecules. Some observations on the reaction of a diaziridine with the iodine-iodide ion system. J. Org. Chem. 35, 2465–2471 (1970).

    Article  CAS  Google Scholar 

  42. Hong, Y. & Stanley, P. Lec3 Chinese hamster ovary mutants lack UDP-N-acetylglucosamine 2-epimerase activity because of mutations in the epimerase domain of the Gne gene. J. Biol. Chem. 278, 53045–53054 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Ito, M., Ikeda, K., Suzuki, Y., Tanaka, K. & Saito, M. An improved fluorometric high-performance liquid chromatography method for sialic acid determination: an internal standard method and its application to sialic acid analysis of human apolipoprotein E. Anal. Biochem. 300, 260–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Shibuya, N. et al. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(α2–6)Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–1601 (1987).

    CAS  PubMed  Google Scholar 

  45. Chokhawala, H.A. et al. Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides. ACS Chem. Biol. 3, 567–576 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lis, H., Joubert, F.J. & Sharon, N. Isolation and properties of N-acetyllactosamine-specific lectins from nine Erythrina species. Phytochemistry 24, 2803–2809 (1985).

    Article  CAS  Google Scholar 

  47. Osinaga, E. et al. Amino acid sequence and three-dimensional structure of the Tn-specific isolectin B4 from Vicia villosa. FEBS Lett. 412, 190–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Jones, M.B. et al. Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85, 394–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Luchansky, S.J., Yarema, K.J., Takahashi, S. & Bertozzi, C.R. GlcNAc 2-epimerase can serve a catabolic role in sialic acid metabolism. J. Biol. Chem. 278, 8035–8042 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michael Pawlita (German Cancer Research Center) and James Paulson (The Scripps Research Institute) for sharing BJAB K20, BJAB K88, HL60-I and HL60-II cells, and Ellen Vitetta (UT Southwestern Medical Center) for sharing Daudi cells. We thank Yan Li (UT Southwestern Medical Center Protein Chemistry Technology Center) for mass spectrometry analysis of sugars and Angela Mobley (UT Southwestern Medical Center Flow Cytometry Core Facility) for help with flow cytometry. We thank Dr Yoshihito Tanaka and Dr Seokho Yu for advice on synthesis. M.R.B. acknowledges the support of an NSF graduate fellowship and Stanford University. This work was supported by funds from a March of Dimes Basil O'Connor Starter Scholar Award, the Welch Foundation and the University of Texas Southwestern Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J Kohler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond, M., Zhang, H., Vu, P. et al. Photocrosslinking of glycoconjugates using metabolically incorporated diazirine-containing sugars. Nat Protoc 4, 1044–1063 (2009). https://doi.org/10.1038/nprot.2009.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.85

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing