Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The role of IFN-γ Elispot assay in HIV vaccine research

Abstract

The interferon (IFN)-γ Elispot assay has been widely used as a general screening method for the quantification and characterization of the human immunodeficiency virus (HIV)-specific CD8+ T cell responses. However, the predictive power of this assay has been challenged due to the lack of efficacy of a recently conducted HIV vaccine phase IIb trial, despite induction of robust Elispot responses. This finding plus improvements in multiparameter flow cytometry, which has the potential advantage of simultaneously quantifying numerous parameters, raises questions regarding the future role of IFN-γ Elispot as a gateway to moving forward with clinical trials of candidate vaccines. However, the IFN-γ Elispot assay has been, unlike other techniques, evaluated and validated in several proficiency panels and is advantageous in cost-effectively detecting and mapping T-cell responses. Here we present a detailed protocol for a state-of-the-art 3-d IFN-γ Elispot assay and review further advantages and disadvantages of this method for the characterization of HIV-specific CD8+ T cell responses.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Schematic drawing of the principle of the Elispot assay.
Figure 2: Anticipated results of an Elispot assay.

Similar content being viewed by others

References

  1. Koup, R.A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmitz, J.E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Sáez-Cirión, A. et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc. Natl. Acad. Sci. USA 104, 6776–6781 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jin, X. et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189, 991–998 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Borrow, P., Lewicki, H., Hahn, B.H., Shaw, G.M. & Oldstone, M.B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103–6110 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Plata, F. et al. AIDS virus-specific cytotoxic T lymphocytes in lung disorders. Nature 328, 348–351 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Walker, B.D. et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature 328, 345–348 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Price, D.A. et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl. Acad. Sci. USA 94, 1890–1895 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allen, T.M. et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407, 386–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Carrington, M. & O'Brien, S.J. The influence of HLA genotype on AIDS. Annu. Rev. Med. 54, 535–551 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Streeck, H. et al. Recognition of a defined region within p24 gag by CD8+ T cells during primary human immunodeficiency virus type 1 infection in individuals expressing protective HLA class I alleles. J. Virol. 81, 7725–7731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Altfeld, M. et al. HLA alleles associated with delayed progression to AIDS contribute strongly to the initial CD8(+) T cell response against HIV-1. PLoS Med. 3, e403 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Czerkinsky, C. et al. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J. Immunol. Methods 110, 29–36 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Czerkinsky, C.C., Nilsson, L.A., Nygren, H., Ouchterlony, O. & Tarkowski, A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods 65, 109–121 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Schmittel, A., Keilholz, U. & Scheibenbogen, C. Evaluation of the interferon-gamma ELISPOT-assay for quantification of peptide specific T lymphocytes from peripheral blood. J. Immunol. Methods 210, 167–174 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Sun, Y. et al. A systematic comparison of methods to measure HIV-1 specific CD8 T cells. J. Immunol. Methods 272, 23–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Hill, P.C. et al. Longitudinal assessment of an ELISPOT test for Mycobacterium tuberculosis infection. PLoS Med. 4, e192 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kester, K.E. et al. Phase 2a trial of 0, 1, and 3 month and 0, 7, and 28 day immunization schedules of malaria vaccine RTS,S/AS02 in malaria-naive adults at the Walter Reed Army Institute of Research. Vaccine 26, 2191–2202 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Pass, H.A., Schwarz, S.L., Wunderlich, J.R. & Rosenberg, S.A. Immunization of patients with melanoma peptide vaccines: immunologic assessment using the ELISPOT assay. Cancer J. Sci. Am. 4, 316–323 (1998).

    CAS  PubMed  Google Scholar 

  20. Lauer, G.M. et al. Full-breadth analysis of CD8+ T-cell responses in acute hepatitis C virus infection and early therapy. J. Virol. 79, 12979–12988 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Z.Y., Okita, D.K., Howard, J. Jr. & Conti-Fine, B.M. Th1 epitope repertoire on the alpha subunit of human muscle acetylcholine receptor in myasthenia gravis. Neurology 48, 1643–1653 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Frahm, N. et al. Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes. Nat. Immunol. 7, 173–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Frahm, N. et al. Consistent cytotoxic-T-lymphocyte targeting of immunodominant regions in human immunodeficiency virus across multiple ethnicities. J. Virol. 78, 2187–2200 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cox, J.H. et al. Results of an ELISPOT proficiency panel conducted in 11 laboratories participating in international human immunodeficiency virus type 1 vaccine trials. AIDS Res. Hum. Retroviruses 21, 68–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Horton, H. et al. Optimization and validation of an 8-color intracellular cytokine staining (ICS) assay to quantify antigen-specific T cells induced by vaccination. J. Immunol. Methods 323, 39–54 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Betts, M.R. et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107, 4781–4789 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boulet, S. et al. A dual color ELISPOT method for the simultaneous detection of IL-2 and IFN-gamma HIV-specific immune responses. J. Immunol. Methods 320, 18–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. McElrath, M.J. et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 372, 1894–1905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sekaly, R.P. The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J. Exp. Med. 205, 7–12 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Streeck, H. et al. Antigen load and viral sequence diversification determine the functional profile of HIV-1-specific CD8+ T cells. PLoS Med. 5, e100 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bailey, J.R. et al. Transmission of human immunodeficiency virus type 1 from a patient who developed AIDS to an elite suppressor. J. Virol. 82, 7395–7410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Addo, M.M. et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol. 77, 2081–2092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gnann, J.W. Jr., Nelson, J.A. & Oldstone, M.B. Fine mapping of an immunodominant domain in the transmembrane glycoprotein of human immunodeficiency virus. J. Virol. 61, 2639–2641 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Addo, M.M. et al. The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals. Proc. Natl. Acad. Sci. USA 98, 1781–1786 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bihl, F.K. et al. Simultaneous assessment of cytotoxic T lymphocyte responses against multiple viral infections by combined usage of optimal epitope matrices, anti-CD3 mAb T-cell expansion and 'RecycleSpot'. J. Transl. Med. 3, 20 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streeck, H., Frahm, N. & Walker, B. The role of IFN-γ Elispot assay in HIV vaccine research. Nat Protoc 4, 461–469 (2009). https://doi.org/10.1038/nprot.2009.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing