Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Stepwise differentiation of pluripotent stem cells into retinal cells

Abstract

Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of blastocyst-stage embryos. They can maintain an undifferentiated state indefinitely and can differentiate into derivatives of all three germ layers, namely ectoderm, endoderm and mesoderm. Although much progress has been made in the propagation and differentiation of ES cells, induction of photoreceptors has generally required coculture with or transplantation into developing retinal tissue. Here, we describe a protocol for generating retinal cells from ES cells by stepwise treatment with defined factors. This method preferentially induces photoreceptor and retinal pigment epithelium (RPE) cells from mouse and human ES cells. In our protocol, differentiation of RPE and photoreceptors from mouse ES cells requires 28 d and the differentiation of human ES cells into mature RPE and photoreceptors requires 120 and 150 d, respectively. This differentiation system and the resulting pluripotent stem cell-derived retinal cells will facilitate the development of transplantation therapies for retinal diseases, drug testing and in vitro disease modeling. It will also improve our understanding of the development of the central nervous system, especially the eye.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of neural stem/progenitor cells in adult eye tissue.
Figure 2: Multistep commitment in the development of retinal cells.
Figure 3: Schematic diagram of mouse and human ES cell differentiation into retinal cells.
Figure 4: Undifferentiated mouse ES cells, formed aggregates and FACS analysis.
Figure 5: Morphology of differentiated pelleted mouse ES cells after sorting.
Figure 6: Immunocytochemical analyses of the differentiated cells from mouse ES cells.
Figure 7: Morphology of undifferentiated human ES cells and detachment of ES cell colonies.
Figure 8: Morphology of floating aggregates formed from human ES cells.
Figure 9: Morphology of human ES cell aggregates in adherent culture.
Figure 10: Morphology of RPE cells differentiated from human ES cells.
Figure 11: RPE derived from human ES cells.
Figure 12: Morphology of putative photoreceptors differentiated from human ES cells.
Figure 13: Photoreceptors derived from human ES cells.

Similar content being viewed by others

References

  1. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  Google Scholar 

  2. Zhao, C., Deng, W. & Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  Google Scholar 

  3. Ooto, S. et al. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc. Natl Acad. Sci. USA 101, 13654–13659 (2004).

    Article  CAS  Google Scholar 

  4. Osakada, F. et al. Wnt signaling promotes regeneration in the retina of adult mammals. J. Neurosci. 27, 4210–4219 (2007).

    Article  CAS  Google Scholar 

  5. Lindvall, O. & Kokaia, Z. Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096 (2006).

    Article  CAS  Google Scholar 

  6. Hartong, D.T., Berson, E.L. & Dryja, T.P. Retinitis pigmentosa. Lancet 368, 1795–1809 (2006).

    Article  CAS  Google Scholar 

  7. Rattner, A. & Nathans, J. Macular degeneration: recent advances and therapeutic opportunities. Nat. Rev. Neurosci. 7, 860–872 (2006).

    Article  CAS  Google Scholar 

  8. Haruta, M. et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest. Ophthalmol. Vis. Sci. 45, 1020–1025 (2004).

    Article  Google Scholar 

  9. Lund, R.D. et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8, 189–199 (2006).

    Article  CAS  Google Scholar 

  10. MacLaren, R.E. et al. Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207 (2006).

    Article  CAS  Google Scholar 

  11. Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036 (2000).

    Article  CAS  Google Scholar 

  12. Haruta, M. et al. Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat. Neurosci. 4, 1163–1164 (2001).

    Article  CAS  Google Scholar 

  13. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  14. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  15. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  16. Lamba, D., Karl, M. & Reh, T. Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell 2, 538–549 (2008).

    Article  CAS  Google Scholar 

  17. Lamba, D.A., Gust, J. & Reh, T.A. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in crx-deficient mice. Cell Stem Cell 4, 73–79 (2009).

    Article  CAS  Google Scholar 

  18. Osakada, F. & Takahashi, M. Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: targeting the Wnt Pathway and transplantation therapy as strategies for retinal repair. J. Pharmacol. Sci. 109, 168–173 (2009).

    Article  CAS  Google Scholar 

  19. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  Google Scholar 

  20. Mizuseki, K. et al. Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc. Natl Acad. Sci. USA 100, 5828–5833 (2003).

    Article  CAS  Google Scholar 

  21. Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    Article  CAS  Google Scholar 

  22. Adler, R. & Canto-Soler, M.V. Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev. Biol. 305, 1–13 (2007).

    Article  CAS  Google Scholar 

  23. Osakada, F. & Takahashi, M. Retinal regeneration by somatic stem cells. Exp. Med. 24, 256–262 (2006).

    CAS  Google Scholar 

  24. Marquardt, T. & Gruss, P. Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci. 25, 32–38 (2002).

    Article  CAS  Google Scholar 

  25. Ikeda, H. et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc. Natl Acad. Sci. USA 102, 11331–11336 (2005).

    Article  CAS  Google Scholar 

  26. Osakada, F. et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat. Biotechnol. 26, 215–224 (2008).

    Article  CAS  Google Scholar 

  27. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  28. Bain, G., Kitchens, D., Yao, M., Huettner, J.E. & Gottlieb, D.I. Embryonic stem cells express neuronal properties in vitro . Dev. Biol. 168, 342–357 (1995).

    Article  CAS  Google Scholar 

  29. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  Google Scholar 

  30. Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M. & McKay, R.D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679 (2000).

    Article  CAS  Google Scholar 

  31. Ying, Q.L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    Article  CAS  Google Scholar 

  32. Barberi, T. et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200–1207 (2003).

    Article  CAS  Google Scholar 

  33. Ueno, M. et al. Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc. Natl Acad. Sci. USA 103, 9554–9559 (2006).

    Article  CAS  Google Scholar 

  34. Kawasaki, H. et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl Acad. Sci. USA 99, 1580–1585 (2002).

    Article  CAS  Google Scholar 

  35. Klimanskaya, I. et al. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6, 217–245 (2004).

    Article  CAS  Google Scholar 

  36. Zhao, X., Liu, J. & Ahmad, I. Differentiation of embryonic stem cells into retinal neurons. Biochem. Biophys. Res. Commun. 297, 177–184 (2002).

    Article  CAS  Google Scholar 

  37. Hirano, M. et al. Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev. Dyn. 228, 664–671 (2003).

    Article  Google Scholar 

  38. Lamba, D.A., Karl, M.O., Ware, C.B. & Reh, T.A. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 12769–12774 (2006).

    Article  CAS  Google Scholar 

  39. Pouton, C.W. & Haynes, J.M. Embryonic stem cells as a source of models for drug discovery. Nat. Rev. Drug Discov. 8, 605–616 (2007).

    Article  Google Scholar 

  40. Nishikawa, S., Goldstein, R.A. & Nierras, C.R. The promise of human induced pluripotent stem cells for research and therapy. Nat. Rev. Mol. Cell Biol. 9, 725–729 (2008).

    Article  CAS  Google Scholar 

  41. Park, I.H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  Google Scholar 

  42. Ebert, A.D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature (2008).

  43. Watanabe, T. & Raff, M.C. Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron 4, 461–467 (1990).

    Article  CAS  Google Scholar 

  44. Levine, E.M., Fuhrmann, S. & Reh, T.A. Soluble factors and the development of rod photoreceptors. Cell. Mol. Life Sci. 57, 224–234 (2000).

    Article  CAS  Google Scholar 

  45. Suemori, H. et al. Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochem. Biophys. Res. Commun. 345, 926–932 (2006).

    Article  CAS  Google Scholar 

  46. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  Google Scholar 

  47. Wataya, T. et al. Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc. Natl. Acad. Sci. USA 105, 11796–11801 (2008).

    Article  CAS  Google Scholar 

  48. Fukuda, H. et al. Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells 24, 763–771 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Suemori and N. Nakatsuji (Kyoto University) for providing the human ES cell line; K. Watanabe, M. Ueno and N. Osakada for valuable comments; and members of the Takahashi laboratory, the Sasai laboratory and the Akaike laboratory for helpful discussions and technical assistance. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, and the Leading Project (M.T. and Y.S.). This study was also supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and the Mochida Memorial Foundation for Medical and Pharmaceutical Research (F.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumitaka Osakada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osakada, F., Ikeda, H., Sasai, Y. et al. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 4, 811–824 (2009). https://doi.org/10.1038/nprot.2009.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.51

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing