Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scototaxis as anxiety-like behavior in fish

Abstract

The scototaxis (dark/light preference) protocol is a behavioral model for fish that is being validated to assess the antianxiety effects of pharmacological agents and the behavioral effects of toxic substances, and to investigate the (epi)genetic bases of anxiety-related behavior. Briefly, a fish is placed in a central compartment of a half-black, half-white tank; following habituation, the fish is allowed to explore the tank for 15 min; the number and duration of entries in each compartment (white or black) are recorded by the observer for the whole session. Zebrafish, goldfish, guppies and tilapias (all species that are important in behavioral neurosciences and neuroethology) have been shown to demonstrate a marked preference for the dark compartment. An increase in white compartment activity (duration and/or entries) should reflect antianxiety behavior, whereas an increase in dark compartment activity should reflect anxiety-promoting behavior. When individual animals are exposed to the apparatus on only one occasion, results can be obtained in 20 min per fish.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Different species of fish vary in the intensity of their preference for the dark environment, and some species might not present a preference for either dark (black bars) or light (white bars) environments.
Figure 2: Test apparatus for the proposed protocol.

References

  1. 1

    Bourin, M. & Hascöett, M. The mouse light/dark box test. Eur. J. Pharmacol. 463, 55–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Belzung, C. & Griebel, R. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 138, 200–209 (2001).

    Google Scholar 

  3. 3

    Green, S. & Hodges, H. Animal models of anxiety. In Behavioral Models in Psychopathology: Theoretical, Industrial and Clinical Perspectives (ed. Willner, P.) 21–49 (Cambridge University Press, Cambridge, 1991).

  4. 4

    Prut, L. & Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463, 3–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Hascöett, M., Bourin, M. & Dhonnchadha, B.A.N. The mouse light–dark paradigm: a review. Progr. NeuroPsychopharmacol. Biol. Psychiatry 25, 141–166 (2001).

    Article  Google Scholar 

  6. 6

    Thorndike, E.L. A note on the psychology of fishes. Am. Nat. 33, 923 (1911).

    Article  Google Scholar 

  7. 7

    Satake, N. & Morton, B.E. Scotophobin A causes dark avoidance in goldfish by elevating pineal N-acetylserotonin. Pharmacol. Biochem. Behav. 10, 449–456 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Serra, E.L., Medalha, C.C. & Mattioli, R. Natural preference of zebrafish (Danio rerio) for a dark environment. Braz. J. Med. Biol. Res. 32, 1551–1553 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Yoshida, M., Nagamine, M. & Uematsu, K. Comparison of behavioral responses to a novel environment between three teleosts, bluegill Lepomis macrochirus, crucian carp Carassius langsdorfii, and goldfish Carassius auratus . Fish. Sci. 71, 314–319 (2005).

    Article  CAS  Google Scholar 

  10. 10

    Gazolla, R.A. Preference for dark substrates in C. auratus: influence of lighting conditions in housing environment. MSc thesis, 25 pp. (Universidade Estadual Paulista, Bauru/SP, Brazil, 2008).

  11. 11

    Gouveia, A. Jr. et al. Preference of goldfish (Carassius auratus) for dark places. Rev. Etol. 7, 63–66 (2005).

    Google Scholar 

  12. 12

    Maximino, C. et al. A comparative analysis of the preference for dark environments in five teleosts. Int. J. Comp. Psychol. 20, 351–367 (2007).

    Google Scholar 

  13. 13

    Gerlai, R., Lahav, M., Guo, S. & Rosenthal, A. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. Behav. 67, 773–782 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Bjerke, S. Developing behavioral assays to study dopamine-related disorders in zebrafish (Daniorerio). PhD thesis, 104 pp. (The University of Oslo, Oslo, Sweden, 2002).

  15. 15

    Budaev, S.V. 'Personality' in the guppy (Poecilia reticulata): a correlational study of exploratory behavior and social tendency. J. Comp. Psychol. 111, 399–411 (1997).

    Article  Google Scholar 

  16. 16

    McCartt, A.L., Lynch, W.E. Jr. & Johnson, D.L. How light, a predator, and experience influence bluegill use of shade and schooling. Environ. Biol. Fishes 49, 79–87 (1997).

    Article  Google Scholar 

  17. 17

    Bleakley, B.H., Martell, C.M. & Brodie, E.D. III. Variation in anti-predator behavior among five strains of inbred guppies, Poecilia reticulata . Behav. Genet. 36, 783–791 (2006).

    Article  PubMed  Google Scholar 

  18. 18

    Kleerekoper, H. et al. An analysis of locomotor behaviour of goldfish (Carassius auratus). Anim. Behav. 18, 317–330 (1970).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Crawshaw, L.I. Twenty-four hour records of body temperature and activity in bluegill sunfish (Lepomis macrochirus) and brown bullheads (Ictalurus nebulosus). Comp. Biochem. Physiol. A 51, 11–14 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Warren, E.W. & Callaghan, S. Individual differences in response to an open field test by the guppy Poecilia reticulata (Peters). J. Fish Biol. 7, 105–113 (1976).

    Article  Google Scholar 

  21. 21

    Gervai, J. & Csányi, V. Behavior-genetic analysis of the paradise fish, Macropodus opercularis. I. Characterization of the behavioral responses of inbred strains in novel environments: a factor analysis. Behav. Genet. 15, 503–519 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Mikheev, V.N. & Andreev, O.A. Two-phase exploration of a novel environment in the guppy, Poecilia reticulata . J. Fish Biol. 42, 375–383 (1993).

    Article  Google Scholar 

  23. 23

    Mok, E.Y. & Munro, A.D. Effects of dopaminergic drugs on locomotor activity in teleost fish of the genus Oreochromis (Cichlidae): involvement of the telencephalon. Physiol. Behav. 64, 227–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Giacomini, N.J., Rose, B., Kobayashi, K. & Guo, S. Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol. Teratol. 28, 245–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Baraban, S.C., Taylor, M.R., Castro, P.A. & Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131, 759–768 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Anichtchik, O.V., Kaslin, J., Peitsaro, N., Scheinin, M. & Panula, P. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Neurochem. 88, 443–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Aihart, M.J. et al. Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). Neurotoxicol. Teratol. 29, 652–664 (2007).

    Article  CAS  Google Scholar 

  28. 28

    Swain, H.A., Sigstad, C. & Scalzo, F.M. Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol. Teratol. 26, 725–729 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Echevarria, D.J., Hammack, C.M., Pratt, D.W. & Hosemann, J.D. A novel test battery to assess global drug effects using the zebrafish. Int. J. Comp. Psychol. 21, 19–34 (2008).

    Google Scholar 

  30. 30

    Bencan, Z. & Levin, E.D. The role of α7 and α4β2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol. Behav. 95, 408–412 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    López-Patiño, M.A., Yu, L., Cabral, H. & Zhdanova, I.V. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol. Behav. 93, 160–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Levin, E.D., Bencan, Z. & Cerutti, D.T. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav. 90, 54–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Wilson, D.S., Coleman, K., Clark, A.B. & Biederman, L. Shy-bold continuum in pumpkinseed sunfish (Lepomis gibbosus): an ecological study of a psychological trait. J. Comp. Psychol. 107, 250–260 (1993).

    Article  Google Scholar 

  34. 34

    Budaev, S.V. Alternative styles in the European wrasse, Symphodus ocellatus: boldness-related schooling tendency. Environ. Biol. Fishes 49, 71–78 (1997).

    Article  Google Scholar 

  35. 35

    Budaev, S.V. How many dimensions are needed to describe temperament in animals: a factor reanalysis of two data sets. Int. J. Comp. Psychol. 11, 17–29 (1998).

    Google Scholar 

  36. 36

    Brown, C., Jones, F. & Braithwaite, V. In situ examination of boldness–shyness traits in the tropical poeciliid, Brachyraphis episcopi . Anim. Behav. 70, 1003–1009 (2005).

    Article  Google Scholar 

  37. 37

    Moretz, J.A., Martins, E.P. & Robison, B.D. Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behav. Ecol. 18, 556–562 (2007).

    Article  Google Scholar 

  38. 38

    Montgomery, K.C. The relation between fear induced by novel stimulation and exploratory behavior. J. Comp. Physiol. Psychol. 48, 254–260 (1955).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Craig, W. Appetites and aversions as constituents of instincts. Proc. Natl. Acad. Sci. USA 3, 685–688 (1917).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    McNaughton, N. & Corr, P.J. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci. Biobehav. Rev. 28, 285–305 (2004).

    Article  PubMed  Google Scholar 

  41. 41

    Rodgers, R.J., Cao, B-J. & Holmes, A. Animal models of anxiety: an ethological perspective. Braz. J. Med. Biol. Res. 30, 289–304 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Rodgers, R.J. Animal models of 'anxiety': where next? Behav. Pharmacol. 8, 477–496 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Risner, M.L., Lemerise, E., Vukmanic, E.V. & Moore, A. Behavioral spectral sensitivity of the zebrafish (Danio rerio). Vision Res. 46, 2625–2635 (2006).

    Article  PubMed  Google Scholar 

  44. 44

    Yager, D. Behavioural measures of the spectral sensitivity of dark-adapted goldfish. Nature 220, 1052–1053 (1968).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Fuiman, L.A. & Magurran, A.E. Development of predator defenses in fishes. Rev. Fish Biol. Fish. 4, 145–183 (1994).

    Article  Google Scholar 

  46. 46

    Peitsaro, N., Kaslin, J., Anichtchik, O.V. & Panula, P. Modulation of the histaminergic system and behaviour by a-fluoromethylhistidine in zebrafish. J. Neurochem. 86, 432–441 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Lockwood, B., Bjerke, S., Kobayashi, K. & Guo, S. Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol. Biochem. Behav. 77, 647–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Webb, P.W. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24, 107–120 (1984).

    Article  Google Scholar 

  49. 49

    Altimiras, J. & Larsen, E. Non-invasive recording of heart rate and ventilation rate in rainbow trout during rest and swimming. Fish go wireless! J. Fish Biol. 57, 197–209 (2000).

    Article  Google Scholar 

  50. 50

    Barreto, R.E. & Volpato, G. Caution for using ventilatory frequency as an indicator of stress in fish. Behav. Processes 66, 43–51 (2004).

    Article  PubMed  Google Scholar 

  51. 51

    Barreto, R.E., Luchiari, A.C. & Marcondes, A.L. Ventilatory frequency indicates visual recognition of an allopatric predator in naïve Nile tilapia. Behav. Processes 60, 235–239 (2003).

    Article  PubMed  Google Scholar 

  52. 52

    Sager, D.R., Hocutt, C.H. & Staufer, J.R. Jr. Base and stressed ventilation rates for Leiostomus xanthurus Lacépède and Morone americana Gmelin exposed to strobe lights. J. Appl. Ichtyol. 16, 89–97 (2000).

    Article  Google Scholar 

  53. 53

    Fujii, R. The regulation of motile activity in fish chromatophores. Pigment Cell Res. 13, 300–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Kawauchi, H., Kawazoe, I., Tsubokawa, M., Kishida, M. & Baker, B.I. Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature 305, 321–323 (1983).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Hoglund, E., Balm, P.H. & Winberg, S. Skin darkening, a potential social signal in subordinate arctic charr (Salvelinus alpinus): the regulatory role of brain monoamines and pro-opiomelanocortin-derived peptides. J. Exp. Biol. 203, 1711–1721 (2000).

    CAS  PubMed  Google Scholar 

  56. 56

    Gottesman, I.I. & Gould, T.D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    Article  PubMed  Google Scholar 

  57. 57

    Gould, T.D. & Gottesman, I.I. Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav. 5, 113–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Bakshi, V.P. & Kalin, N.H. Animal models and endophenotypes of anxiety and stress disorders. In Neuropsychopharmacology: The Fifth Generation of Progress (eds. Davis, K.L., Charney, D., Coyle, J.T. & Nemeroff, C.) 885–900 (American College of Neuropsychopharmacology, Nashville, Tennessee, 2002).

  59. 59

    Messick, S. Validity of psychological assessment: validation of inferences from persons' responses and performances as scientific inquiry into score meaning. Am. Psychol. 50, 741–749 (1995).

    Article  Google Scholar 

  60. 60

    Trout, J.D. Measurement. In A Companion to the Philosophy of Science (ed. Newton-Smith, W. H.) 265–276 (Blackwell Publishing, Oxford, 1999).

  61. 61

    Li, H. The resolution of some paradoxes related to reliability and validity. J. Edu. Behav. Stat. 28, 89–95 (2003).

    Article  Google Scholar 

  62. 62

    Walf, A.A. & Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 3, 322–328 (2007).

    Article  CAS  Google Scholar 

  63. 63

    Willner, P. Behavioural models in psychopathology. In Behavioural Models in Psychopathology: Theoretical, Industrial and Clinical Perspectives (ed. Willner, P.) 3–18 (Cambridge University Press, Cambridge, 1991).

  64. 64

    Segal, D.S. & Geyer, M.A. Animal models of psychopathology. In Psychobiological Foundations of Clinical Psychiatry (eds. Judd, L.L. & Groves, P.M.) 1–14 (J.B. Lippincott, Philadelphia, Pennsylvania, 1985).

  65. 65

    Matthews, K. & Reid, I. Animal models for depression: the anhedonic rat – theory and practice. In New Models for Depression (eds. Ebert, D. & Ebmeier, K.P.) 49–71 (Karger, Basel, 1998).

  66. 66

    Guo, S. Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav. 3, 63–74 (2000).

    Article  CAS  Google Scholar 

  67. 67

    Kavaliers, M. & Choleris, E. Antipredator responses and defensive behavior: ecological and ethological approaches for the neurosciences. Neurosci. Biobehav. Rev. 25, 577–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Gray, J.A. & McNaughton, N. Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-hippocampal System (Oxford University Press, Oxford, 2000).

  69. 69

    Toth, M. & Zupan, B. Neurobiology of anxiety. In Handbook of Contemporary Neuropharmacology Vol. 2 (eds. Sibley, D.R., Hanin, I., Kuhar, M. & Skolnick, P.) 3–58 (John Wiley & Sons, Hoboken, New Jersey, 2007).

  70. 70

    Abrams, P.A. Should prey overestimate the risk of predation? Am. Nat. 144, 317–328 (1994).

    Article  Google Scholar 

  71. 71

    Sih, A. Prey uncertainty and the balancing of antipredator and feeding needs. Am. Nat. 139, 1052–1069 (1990).

    Article  Google Scholar 

  72. 72

    Lima, S.L. & Bednekoff, P.A. Temporal variation in danger drives antipredator behavior: the predation risk hypothesis. Am. Nat. 153, 649–659 (1999).

    Article  PubMed  Google Scholar 

  73. 73

    Prior, H. & Sachser, N. Effects of enriched housing environment on the behaviour of young male and female mice in four exploratory tasks. J. Exp. Anim. Sci. 37, 57–68 (1994).

    Google Scholar 

  74. 74

    Chapillon, P., Mannechpe, C., Belzung, C. & Caston, J. Rearing environmental enrichment in two inbred strains of mice: 1. Effects on emotional reactivity. Behav. Genet. 29, 41–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Roy, V., Belzung, C., Delarue, C. & Chapillon, P. Environmental enrichment in BALB/c mice: effects in classical tests of anxiety and exposure to a predatory odor. Physiol. Behav. 74, 313–320 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Bertoglio, L.J. & Carobrez, A.P. Previous maze experience required to increase open arms avoidance in rats submitted to the elevated plus-maze model of anxiety. Behav. Brain Res. 108, 197–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    File, S.E. One trial tolerance to the anxiolytic effects of chlordiazepoxide in the plus-maze. Psychopharmacology 100, 281–282 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    File, S.E. & Zangrossi, H. Jr. 'One trial tolerance' to the anxiolytic actions of benzodiazepine in the elevated plus-maze, or the development of a phobic state? Psychopharmacology 110, 240–244 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Rodgers, R.J. & Shepherd, J.K. Influence of prior maze experience on behaviour and responses to diazepam in the elevated plus-maze in male mice depends upon treatment regimen and prior maze experience. Psychopharmacology 106, 102–110 (1993).

    Article  Google Scholar 

  80. 80

    Holmes, A. & Rodgers, R.J. Responses of Swiss-Webster mice to repeated plus-maze experience: further evidence for qualitative shift in emotional state? Pharmacol. Biochem. Behav. 60, 473–488 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Maximino, C. et al. Reliability of dark preference in zebrafish: test-retest correlations, differing black:white proportions of the apparatus, and inter-laboratory replicability. Behav. Processes (in press).

  82. 82

    Miklósi, Á. & Andews, R.J. The zebrafish as a model for behavioral studies. Zebrafish 3, 227–234 (2006).

    Article  PubMed  Google Scholar 

  83. 83

    Langsdale, J.R.M. Developmental changes in the opacity of larval herring, Clupea harengus, and their implications for vulnerability to predation. J. Mar. Biol. Assays 73, 225–232 (1993).

    Article  Google Scholar 

  84. 84

    McClure, M. Development and evolution of melanophore patterns in fishes of the genus Danio (Teleostei: Cyprinidae). J. Morphol. 241, 83–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Watkins, J., Miklósi, Á. & Andrew, R.J. Early asymmetries in the behavior of zebrafish larvae. Behav. Brain Res. 151, 177–183 (2004).

    Article  PubMed  Google Scholar 

  86. 86

    Walsh, R.N. & Cummins, R.A. The open-field test: a critical review. Psychol. Bull. 83, 482–504 (1976).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Hurd, M.W., Debruyne, J., Straume, M. & Cahill, G.M. Circadian rhythms of locomotor activity in zebrafish. Physiol. Behav. 65, 465–472 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Clark, C.W. & Levy, D.A. Diel vertical migrations by juvenile sockeye salmon and the antipredation window. Am. Nat. 131, 271–290 (1988).

    Article  Google Scholar 

  89. 89

    Levy, D.A. Sensory mechanisms and selective advantage for diel vertical migration in juvenile sockeye salmon, Oncorhynchus nerka . Can. J. Fish. Aquat. Sci. 47, 1796–1802 (1990).

    Article  Google Scholar 

  90. 90

    Neilson, J.D. & Perry, R.J. Diel vertical migrations of marine fishes: an obligate or facultative process? Adv. Mar. Biol. 26, 115–167 (1990).

    Article  Google Scholar 

  91. 91

    Wedemeyer, G.A., Barton, B.A. & McLeay, D.J. Stress and acclimation. In Methods for Fish Biology (eds. Schreck, C.B. & Moyle, P.B.) 451–489 (American Fisheries Society, Bethesda, Maryland, 1990).

  92. 92

    Barton, B.A. Salmonid fishes differ in their cortisol and glucose responses to handling and transport stress. North Am. J. Aquacult. 62, 12–18 (2000).

    Article  Google Scholar 

  93. 93

    Barton, B.A. Physiological and condition-related indicators of environmental stress in fish. In Biological Indicators of Aquatic Ecosystem Health (ed. Adams, S.M.) 111–148 (American Fisheries Society, Bethesda, Maryland, 2002).

  94. 94

    Frisch, A.J. & Anderson, T.A. The response of coral trout (Plectropomus leopardus) to capture, handling, transport and shallow water stress. Fish Physiol. Biochem. 23, 23–34 (2000).

    Article  CAS  Google Scholar 

  95. 95

    Kuwada, H. et al. Effect of fish size, handling stresses and training procedure on the swimming behavior of hatchery-reared striped jack: implications for stock enhancement. Aquaculture 185, 245–256 (2000).

    Article  Google Scholar 

  96. 96

    van Raaij, M.T.M., Pit, D.S.S., Balm, P.H., Steffens, A.B. & van der Thillart, G.E.E. Behavioral strategy and the physiological stress response in rainbow trout exposed to severe hypoxia. Horm. Behav. 30, 85–92 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Façanha, M.F. & Gomes, L.d.C. Efficacy of menthol as an anesthetic for tambaqui (Colossoma macropomum, Characiformes: Characidae). Acta Amazon. 35, 71–75 (2005).

    Article  Google Scholar 

  98. 98

    Keene, J.L., Noakes, D.L.G., Moccia, R.D. & Soto, C.G. The efficacy of clove oil as an anaesthetic for rainbow trout, Oncorhynchus mykiss (Walbaum). Aquacult. Res. 29, 89–101 (1998).

    Article  Google Scholar 

  99. 99

    Holloway, A.C., Keene, J.L., Noakes, D.L.G. & Moccia, R.D. Effects of clove oil and MS-222 on blood hormone profiles in rainbow trout Oncorhynchus mykiss, Walbaum. Aquacult. Res 35, 1025–1030 (2004).

    Article  CAS  Google Scholar 

  100. 100

    Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish Danio (Brachydanio) rerio . (University of Oregon Press, Eugene, Oregon, 2000).

  101. 101

    Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio . Biol. Rev. 83, 13–34 (2008).

    Article  PubMed  Google Scholar 

  102. 102

    Dunbar, R.I.M. Some aspects of research design and their implications in the observational study of behaviour. Behaviour 58, 78–98 (1976).

    Article  Google Scholar 

  103. 103

    Noakes, D.L.G. & Baylis, J.R. Behavior. In Methods for Fish Biology (eds. Schreck, C. B. & Moyle, P. B.) 555–574 (American Fisheries Society, Bethesda, Maryland, 1990).

  104. 104

    Volpato, G. Considerações metodológicas sobre os testes de preferência na avaliação do bem-estar em peixes [Methodological considerations about preference tests for the evaluation of well-being in fish]. Rev. Brasil. Zootecnia 36, 53–61 (2007).

    Article  Google Scholar 

  105. 105

    Faganello, F.R. & Mattioli, R. Anxiolytic-like effect of chlorpheniramine in inhibitory avoidance in goldfish submitted to telencephalic ablation. Progr. Neuropsychopharmacol. Biol. Psychiatry 31, 269–274 (2007).

    Article  CAS  Google Scholar 

  106. 106

    Ninkovic, J. & Bally-Cuif, L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39, 262–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Grunwald, D.J. & Eisen, J.S. Headwaters of the zebrafish—emergence of a new model vertebrate. Nat. Rev. Genet. 3, 717–724 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Johansen, R., Needham, J.R., Colquhoun, D.J., Poppe, T.T. & Smith, A.J. Guidelines for health and welfare monitoring of fish used in research.Lab. Anim. 40, 323–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    American Society of Ichthyologists and Herpetologists, American Fisheries Society & American Institute of Fisheries Research Biologists. Guidelines for use of fishes in field research. Fisheries 13, 16–23 (1988).

  110. 110

    Zhdanova, I.V., Wang, S.Y., Leclair, O.U. & Danilova, N.P. Melatonin promotes sleep-like state in zebrafish. Brain Res. 903, 263–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Magalhães, D.d.P., Cunha, R.A.d., Santos, J.A.A.d., Buss, D.F. & Baptista, D.F. Behavioral response of zebrafish Danio rerio Hamilton 1822 to sublethal stress by sodium hypochlorite: ecotoxicological assay using an image analysis biomonitoring system. Ecotoxicology 16, 417–422 (2007).

    Article  CAS  Google Scholar 

  112. 112

    Covey, T.R., Lee, E.D. & Henion, J.D. High-speed liquid chromatography/tandem mass spectrometry for the determination of drugs in biological samples. Analyt. Chem. 58, 2453–2460 (1986).

    Article  CAS  Google Scholar 

  113. 113

    Bloom, H.D. & Perlmutter, A. A sexual aggregating pheromone system in the zebrafish, Brachydanio rerio . J. Exp. Zool. 199, 215–226 (1977).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Breder, C.M. Jr. & Halpern, F. Innate and acquired behavior affecting the aggregation of fishes. Physiol. Zool. 19, 154–190 (1946).

    Article  PubMed  Google Scholar 

  115. 115

    Maximino, C. et al. Tank enrichment alters exploratory behavior of zebrafish and goldfish. J. Exp. Anim. Sci. (in press).

Download references

Acknowledgements

Part of this research was supported by grants from CAPES to C.A.G.d.M.D. and T.M.d.B. The authors thank the Dark/light Preference Team at the defunct Laboratório de Psicobiologia e Psicopatologia Experimental from Unesp/Bauru for support with data collection.

Author information

Affiliations

Authors

Contributions

C.M. and T.M.d.B. conceived and collected data for most experiments regarding preference for dark environments in the Laboratório de Neurociências e Comportamento and the Laboratório de Comportamento Exploratório, and wrote this paper; C.A.G.d.M.D. conceived the experiments regarding photoperiod and contributed to that section; A.G. and S.M. contributed to sections regarding validity and to the theoretical background related to scototaxis, and also wrote this paper.

Corresponding author

Correspondence to Caio Maximino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maximino, C., Marques de Brito, T., Dias, C. et al. Scototaxis as anxiety-like behavior in fish. Nat Protoc 5, 209–216 (2010). https://doi.org/10.1038/nprot.2009.225

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing