Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Bilateral multielectrode neurophysiological recordings coupled to local pharmacology in awake songbirds

Abstract

Here we describe a protocol for bilateral multielectrode neurophysiological recordings during intracerebral pharmacological manipulations in awake songbirds. This protocol encompasses fitting adult animals with head-posts and recording chambers, and acclimating them to periods of restraint. The adaptation period is followed by bilateral penetrations of multiple electrodes to obtain acute, sensory-driven neurophysiological responses before versus during the application of pharmacological agents of interest. These local manipulations are achieved by simultaneous and restricted drug infusions carried out independently for each hemisphere. We have used this protocol to elucidate how neurotransmitter and neuroendocrine systems shape the auditory and perceptual processing of natural, learned communication signals. However, this protocol can be used to explore the neurochemical basis of sensory processing in other small vertebrates. Representative results and troubleshooting of key steps of this protocol are presented. Following the animal's recovery from head-post and recording chamber implantation surgery, the length of the procedure is 2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complete experimental setup and electrode array.
Figure 2: Representative results obtained with bilateral electrode array during pharmacological treatment in the awake zebra finch.

Similar content being viewed by others

References

  1. Rinberg, D., Koulakov, A. & Gelperin, A. Sparse odor coding in awake behaving mice. J. Neurosci. 26, 8857–8865 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Georgopoulos, A.P., Merchant, H., Naselaris, T. & Amirikian, B. Mapping of the preferred direction in the motor cortex. Proc. Natl. Acad. Sci. USA 104, 11068–11072 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Sillito, A.M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J. Physiol. (Lond.) 250, 305–329 (1975).

    Article  CAS  Google Scholar 

  4. Hicks, T.P., Albus, K., Kaneko, T. & Baumfalk, U. Examination of the effects of cholecystokinin 26–33 and neuropeptide Y on responses of visual cortical neurons of the cat. Neuroscience 52, 263–279 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Tremere, L., Hicks, T.P. & Rasmusson, D.D. Role of inhibition in cortical reorganization of the adult raccoon revealed by microiontophoretic blockade of GABA(A) receptors. J. Neurophysiol. 86, 94–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).

    Article  CAS  Google Scholar 

  7. Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  8. Suga, N., Zhang, Y. & Yan, J. Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the mustached bat. J. Neurophysiol. 77, 2098–2114 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Miller, E.K. & Wilson, M.A. All my circuits: using multiple electrodes to understand functioning neural networks. Neuron 60, 483–488 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Platt, M.L. & Huettel, S.A. Risky business: the neuroeconomics of decision making under uncertainty. Nat. Neurosci. 11, 398–403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Woolley, S.M., Gill, P.R., Fremouw, T. & Theunissen, F.E. Functional groups in the avian auditory system. J. Neurosci. 29, 2780–2793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gentner, T.Q. & Margoliash, D. Neuronal populations and single cells representing learned auditory objects. Nature 424, 669–674 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt, M.F. & Konishi, M. Gating of auditory responses in the vocal control system of awake songbirds. Nat. Neurosci. 1, 513–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Huetz, C., Philibert, B. & Edeline, J.M. A spike-timing code for discriminating conspecific vocalizations in the thalamocortical system of anesthetized and awake guinea pigs. J. Neurosci. 29, 334–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Mouly, A.M., Fort, A., Ben-Boutayab, N. & Gervais, R. Olfactory learning induces differential long-lasting changes in rat central olfactory pathways. Neuroscience 102, 11–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Olivéras, J.L., Montagne-Clavel, J. & Martin, G. Drastic changes of ventromedial medulla neuronal properties induced by barbiturate anesthesia. I. Comparison of the single-unit types in the same awake and pentobarbital-treated rats. Brain Res. 563, 241–250 (1991).

    Article  PubMed  Google Scholar 

  17. Supèr, H. & Roelfsema, P.R. Chronic multiunit recordings in behaving animals: advantages and limitations. Prog. Brain Res. 147, 263–282 (2005).

    Article  PubMed  Google Scholar 

  18. Chiu, C. & Weliky, M. Multi-electrode recording from the developing visual pathway of awake behaving ferrets. J. Neurosci. Methods 136, 55–61 (2004).

    Article  PubMed  Google Scholar 

  19. Tolias, A.S. et al. Recording chronically from the same neurons in awake, behaving primates. J. Neurophysiol. 98, 3780–3790 (2007).

    Article  Google Scholar 

  20. Crandall, S.R., Adam, M., Kinnischtzke, A.K. & Nick, T.A. HVC neural sleep activity increases with development and parallels nightly changes in song behavior. J. Neurophysiol. 98, 232–240 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Crandall, S.R., Aoki, N. & Nick, T.A. Developmental modulation of the temporal relationship between brain and behavior. J. Neurophysiol. 97, 806–816 (2007).

    Article  PubMed  Google Scholar 

  22. McCasland, J.S. & Konishi, M. Interaction between auditory and motor activities in an avian song control nucleus. Proc. Natl. Acad. Sci. USA 78, 7815–7819 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Stripling, R., Volman, S.F. & Clayton, D.F. Response modulation in the zebra finch neostriatum: relationship to nuclear gene regulation. J. Neurosci. 17, 3883–3893 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Doupe, A.J. & Konishi, M. Song-selective auditory circuits in the vocal control system of the zebra finch. Proc. Natl. Acad. Sci. USA 88, 11339–11343 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Stripling, R., Kruse, A.A. & Clayton, D.F. Development of song responses in the zebra finch caudomedial neostriatum: role of genomic and electrophysiological activities. J. Neurobiol. 48, 163–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hessler, N.A. & Doupe, A.J. Singing-related neural activity in a dorsal forebrain-basal ganglia circuit of adult zebra finches. J. Neurosci. 19, 10461–10481 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Capsius, B. & Leppelsack, H.J. Influence of urethane anesthesia on neural processing in the auditory cortex analogue of a songbird. Hear. Res. 96, 59–70 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Gehr, D.D., Hofer, S.B., Marquardt, D. & Leppelsack, H. Functional changes in field L complex during song development of juvenile male zebra finches. Brain Res. Dev. Brain Res. 125, 153–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Chew, S.J., Mello, C., Nottebohm, F., Jarvis, E. & Vicario, D.S. Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. Proc. Natl. Acad. Sci. USA 92, 3406–3410 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Chew, S.J., Vicario, D.S. & Nottebohm, F. A large-capacity memory system that recognizes the calls and songs of individual birds. Proc. Natl. Acad. Sci. USA 93, 1950–1955 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Vicario, D.S. & Yohay, K.H. Song-selective auditory input to a forebrain vocal control nucleus in the zebra finch. J. Neurobiol. 24, 488–505 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Pinaud, R. et al. Inhibitory network interactions shape the auditory processing of natural communication signals in the songbird auditory forebrain. J. Neurophysiol. 100, 441–455 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vicario, D.S. & Raksin, J.N. Possible roles for GABAergic inhibition in the vocal control system of the zebra finch. Neuroreport 11, 3631–3635 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Rauske, P.L., Shea, S.D. & Margoliash, D. State and neuronal class-dependent reconfiguration in the avian song system. J. Neurophysiol. 89, 1688–1701 (2003).

    Article  PubMed  Google Scholar 

  35. Dave, A.S., Yu, A.C. & Margoliash, D. Behavioral state modulation of auditory activity in a vocal motor system. Science 282, 2250–2254 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. George, I., Cousillas, H., Richard, J.P. & Hausberger, M. A new extensive approach to single unit responses using multisite recording electrodes: application to the songbird brain. J. Neurosci. Methods 125, 65–71 (2003).

    Article  PubMed  Google Scholar 

  37. Nick, T.A. & Konishi, M. Dynamic control of auditory activity during sleep: correlation between song response and EEG. Proc. Natl. Acad. Sci. USA 98, 14012–14016 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Müller, C.M. & Scheich, H. Contribution of GABAergic inhibition to the response characteristics of auditory units in the avian forebrain. J. Neurophysiol. 59, 1673–1689 (1988).

    Article  PubMed  Google Scholar 

  39. Terleph, T.A., Lu, K. & Vicario, D.S. Response properties of the auditory telencephalon in songbirds change with recent experience and season. PLoS One 3, e2854 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Terleph, T.A., Mello, C.V. & Vicario, D.S. Auditory topography and temporal response dynamics of canary caudal telencephalon. J. Neurobiol. 66, 281–292 (2006).

    Article  PubMed  Google Scholar 

  41. Terleph, T.A., Mello, C.V. & Vicario, D.S. Species differences in auditory processing dynamics in songbird auditory telencephalon. Dev. Neurobiol. 67, 1498–1510 (2007).

    Article  PubMed  Google Scholar 

  42. Tremere, L.A., Jeong, J.K. & Pinaud, R. Estradiol shapes auditory processing in the adult brain by regulating inhibitory transmission and plasticity-associated gene expression. J. Neurosci. 29, 5949–5963 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Hofer, S.B. & Klump, G.M. Within- and across-channel processing in auditory masking: a physiological study in the songbird forebrain. J. Neurosci. 23, 5732–5739 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the NIH/NIDCD and start-up packages from the University of Rochester to R.P. and L.A.T. We thank M. Weliky for insightful discussions and the three anonymous reviewers for constructive feedback. The authors are especially indebted to E. Jarvis for providing the conditions and support necessary for the development of the multielectrode array described here. We also thank D. Vicario in whose laboratory two of us (T.T. and R.P.) were exposed to basic concepts and techniques that provided the framework for the advancement of this methodology.

Author information

Authors and Affiliations

Authors

Contributions

L.A.T., T.A.T. and R.P. extended the method; L.A.T., J.K.J. and R.P. refined the method; L.A.T. customized the stereotaxic equipment and collected the data presented in the paper; L.A.T., T.A.T., J.K.J. and R.P. wrote the paper.

Corresponding authors

Correspondence to Liisa A Tremere or Raphael Pinaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tremere, L., Terleph, T., Jeong, J. et al. Bilateral multielectrode neurophysiological recordings coupled to local pharmacology in awake songbirds. Nat Protoc 5, 191–200 (2010). https://doi.org/10.1038/nprot.2009.224

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.224

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research