Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of the caspase-3/7 substrate Ac-DEVD-pNA by solution-phase peptide synthesis

Abstract

This protocol describes the gram-scale solution-phase synthesis of the colorimetric caspase-3/7 substrate Ac-DEVD-pNA. The caspase enzymes are integral to cellular inflammation and apoptotic cascades, and are commonly studied by cell biologists, medicinal chemists and chemical biologists. In particular, the assessment of caspase enzymatic activity is a standard method to evaluate cell death pathways and new apoptosis-modulating agents. Caspase enzymatic activity can be conveniently monitored with peptidic chromogenic or fluorogenic substrates, with certain peptide sequences imparting selectivity for certain caspases. The synthesis of these peptide substrates is typically carried out by solid-phase synthesis, a method that is not ideal for production of the gram quantities needed for high-throughput screening. Described herein is a facile method for the synthesis of the Ac-DEVD-pNA caspase-3/7 substrate using solution-phase peptide synthesis. This protocol, involving iterative PyBOP-mediated couplings and Fmoc deprotections, is rapid (about 5 d), operationally simple and can be used to generate over 1 g of product at a fraction of the cost of the commercial substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of caspase activation.
Figure 2
Figure 3
Figure 4: Evaluation of Ac-DEVD-pNA.

Similar content being viewed by others

References

  1. Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Bose, K., Pop, C., Feeney, B. & Clark, A.C. An uncleavable procaspase-3 mutant has a lower catalytic efficiency but an active site similar to that of mature caspase-3. Biochemistry 42, 12298–12310 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Hengartner, M.O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Acehan, D. et al. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9, 423–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Chao, Y. et al. Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation. PLoS Biol. 3, e183 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yin, Q. et al. Caspase-9 holoenzyme is a specific and optimal procaspase-3 processing machine. Mol. Cell 22, 259–268 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walsh, J.G. et al. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc. Natl. Acad. Sci. USA 105, 12815–12819 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Riedl, S.J. et al. Structural basis for the activation of human procaspase-7. Proc. Natl. Acad. Sci. USA 98, 14790–14795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luthi, A.U. & Martin, S.J. The CASBAH: a searchable database of caspase substrates. Cell Death Differ. 14, 641–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Timmer, J.C. & Salvesen, G.S. Caspase substrates. Cell Death Differ. 14, 66–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Engidawork, E., Gulesserian, T., Yoo, B.C., Cairns, N. & Lubec, G. Alteration of caspases and apoptosis-related proteins in brains of patients with Alzheimer's disease. Biochem. Biophys. Res. Commun. 281, 84–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Blandini, F. et al. Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology 66, 529–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Roth, K.A. Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J. Neuropathol. Exp. Neurol. 60, 829–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Nagatsu, T. & Sawada, M. Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects. J. Neural. Transm. Suppl. 113–120 (2007).

  15. Rubinsztein, D.C. & Carmichael, J. Huntington's disease: molecular basis of neurodegeneration. Expert Rev. Mol. Med. 5, 1–21 (2003).

    Article  PubMed  Google Scholar 

  16. Martin, L.J. Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol. 58, 459–471 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Green, D.R. & Kroemer, G. Pharmacological manipulation of cell death: clinical applications in sight? J. Clin. Invest. 115, 2610–2617 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Soung, Y.H. et al. Caspase-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res. 65, 815–821 (2005).

    CAS  PubMed  Google Scholar 

  20. Soung, Y.H. et al. Caspase-8 gene is frequently inactivated by the frameshift somatic mutation 1225_1226delTG in hepatocellular carcinomas. Oncogene 24, 141–147 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, H.S. et al. Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 125, 708–715 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Mandruzzato, S., Brasseur, F., Andry, G., Boon, T. & van der Bruggen, P. A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J. Exp. Med. 186, 785–793 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teitz, T. et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat. Med. 6, 529–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Teitz, T., Lahti, J.M. & Kidd, V.J. Aggressive childhood neuroblastomas do not express caspase-8: an important component of programmed cell death. J. Mol. Med. 79, 428–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Shin, M.S. et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99, 4094–4099 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Park, W.S. et al. Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 21, 2919–2925 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kania, J., Konturek, S.J., Marlicz, K., Hahn, E.G. & Konturek, P.C. Expression of survivin and caspase-3 in gastric cancer. Dig. Dis. Sci. 48, 266–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Zou, H. et al. Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP. J. Biol. Chem. 278, 8091–8098 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Shiozaki, E.N. et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 11, 519–527 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Roy, S. et al. Maintenance of caspase-3 proenzyme dormancy by an intrinsic 'safety catch' regulatory tripeptide. Proc. Natl. Acad. Sci. USA 98, 6132–6137 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grigoriev, M.Y., Pozharissky, K.M., Hanson, K.P., Imyanitov, E.N. & Zhivotovsky, B. Expression of caspase-3 and -7 does not correlate with the extent of apoptosis in primary breast carcinomas. Cell Cycle 1, 337–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Krepela, E., Prochazka, J., Liul, X., Fiala, P. & Kinkor, Z. Increased expression of Apaf-1 and procaspase-3 and the functionality of intrinsic apoptosis apparatus in non-small cell lung carcinoma. Biol. Chem. 385, 153–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Fink, D. et al. Elevated procaspase levels in human melanoma. Melanoma Res. 11, 385–393 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Estrov, Z. et al. Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia. Blood 92, 3090–3097 (1998).

    CAS  PubMed  Google Scholar 

  35. Putt, K.S. et al. Small molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol. 2, 543–550 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Peterson, Q.P. et al. PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. J. Mol. Biol. 388, 144–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peterson, Q.P. et al. Procaspase-3 activation as an anti-cancer strategy: structure-activity relationship of PAC-1, and its cellular co-localization with procaspase-3. J. Med. Chem. 52, 5721–5731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thornberry, N. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Funtional relationships established for key mediators of apoptosis. J. Biol. Chem. 27, 17907–17911 (1997).

    Article  Google Scholar 

  39. Nicholson, D.W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Goode, D.R., Sharma, A.K. & Hergenrother, P.J. Using peptidic inhibitors to systematically probe the S1' site of caspase-3 and caspase-7. Org. Lett. 7, 3529–3532 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Smolewski, P., Grabarek, J., Phelps, D.J. & Darzynkiewicz, Z. Stathmo-apoptosis: arresting apoptosis by fluorochrome-labeled inhibitor of caspases. Int. J. Oncol. 19, 657–663 (2001).

    CAS  PubMed  Google Scholar 

  42. Hardy, J.A. & Wells, J.A. Dissecting an allosteric switch in caspase-7 using chemical and mutational probes. J. Biol. Chem. 284, 26063–26069 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chu, W., Rothfuss, J., Chu, Y., Zhou, D. & Mach, R.H. Synthesis and in vitro evaluation of sulfonamide isatin Michael acceptors as small molecule inhibitors of caspase-6. J. Med. Chem. 52, 2188–2191 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Chu, W. et al. Isatin sulfonamide analogs containing a Michael addition acceptor: a new class of caspase 3/7 inhibitors. J. Med. Chem. 50, 3751–3755 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Chu, W. et al. N-benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: synthesis, in vitro activity, and molecular modeling studies. J. Med. Chem. 48, 7637–7647 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Guo, Z., Xian, M., Zhang, W., McGill, A. & Wang, P.G. N-nitrosoanilines: a new class of caspase-3 inhibitors. Bioorg. Med. Chem. 9, 99–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, Y.-H. et al. Design, synthesis and biological evaluation of isoquinoline-1,3,4-trione derivatives as potent caspase-3 inhibitors. J. Med. Chem. 49, 1613–1623 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, D. et al. Potent and selective non-peptide inhibitors of caspases 3 and 7. J. Med. Chem. 44, 2015–2026 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Wu, J.C. & Fritz, L.C. Irreversible caspase inhibitors: tools for studying apoptosis. Methods 17, 320–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Chapman, J.G. et al. A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin reduces myocardial ischemic injury. Eur. J. Pharmacol. 456, 59–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Hardy, J.A., Lam, J., Nguyen, J.T., O'Brien, T. & Wells, J.A. Discovery of an allosteric site in the caspases. Proc. Natl. Acad. Sci. USA 101, 12461–12466 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoeg-Jensen, T., Jakobsen, M.H. & Holm, A. A new method for rapid solution synthesis of shorter peptides by use of PyBOP. Tetrahedron Lett. 32, 6387–6390 (1991).

    Article  CAS  Google Scholar 

  53. Carpino, L.A. et al. Rapid, continuous solution-phase peptide synthesis: application to peptides of pharmaceutical interest. Org. Process Res. Dev. 7, 28–37 (2002).

    Article  Google Scholar 

  54. Thompson, C.M., Quinn, C.A. & Hergenrother, P.J. Total synthesis and cytoprotective properties of dykellic acid. J. Med. Chem. 52, 117–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Rijkers, D.T.S., Adams, H.P.H.M., Hemker, H.C. & Tesser, G.I. A convenient synthesis of amino acid p-nitroanilides; synthons in the synthesis of protease substrates. Tetrahedron 51, 11235–11250 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Institutes of Health (R01-CA120439) for the support of this work. Q.P.P. was partially supported by a Chemistry–Biology Interface Training Grant from the National Institutes of Health (Ruth L. Kirschstein National Research Service Award 1 T32 GM070421 from the National Institute of General Medical Sciences) and by a predoctoral fellowship from the ACS Division of Medicinal Chemistry. D.C.W. was partially supported by Ruth L. Kirschstein National Research Service Award 3F31CA130138-01S1.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Paul J Hergenrother.

Supplementary information

Supplementary Data

NMR Spectrum for Ac-DEVD-pNA (PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, Q., Goode, D., West, D. et al. Preparation of the caspase-3/7 substrate Ac-DEVD-pNA by solution-phase peptide synthesis. Nat Protoc 5, 294–302 (2010). https://doi.org/10.1038/nprot.2009.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.223

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing