Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue

Abstract

Cells contain a large number of antioxidants to prevent or repair the damage caused by reactive oxygen species, as well as to regulate redox-sensitive signaling pathways. General protocols are described to measure the antioxidant enzyme activity of superoxide dismutase (SOD), catalase and glutathione peroxidase. The SODs convert superoxide radical into hydrogen peroxide and molecular oxygen, whereas the catalase and peroxidases convert hydrogen peroxide into water. In this way, two toxic species, superoxide radical and hydrogen peroxide, are converted to the harmless product water. Western blots, activity gels and activity assays are various methods used to determine protein and activity in both cells and tissue depending on the amount of protein required for each assay. Other techniques including immunohistochemistry and immunogold can further evaluate the levels of the various antioxidant enzymes in tissues and cells. In general, these assays require 24–48 h to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antioxidant enzyme schematic.
Figure 2: MnSOD and CuZnSOD activity gels.
Figure 3: Catalase and GPx activity gels.
Figure 4: Antioxidant immunofluorescent staining of cultured cells.
Figure 5: Immunohistochemistry for MnSOD.
Figure 6: Subcellular localization of MnSOD by immunogold.

Similar content being viewed by others

References

  1. Cerutti, P.A. Prooxidant states and cancer. Science 227, 375–381 (1985).

    Article  CAS  Google Scholar 

  2. Allen, R.G. & Balon, A.K. Oxidative influence in development and differentiation: an overview of a free radical theory of development. Free Radic. Biol. Med. 6, 631–661 (1989).

    Article  CAS  Google Scholar 

  3. Vaquero, E.C., Edderkaoui, M., Pandol, S.J., Gukovsky, I. & Gukovskaya, A.S. Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J. Biol. Chem. 27, 34643–34654 (2004).

    Article  Google Scholar 

  4. Shibanuma, M., Kuroki, T. & Nose, K. Induction of DNA replication and expression of proto-oncogenes c-myc and c-fos in quiescent Balb/3T3 cells by xanthine/xanthine oxidase. Oncogene 3, 17–21 (1988).

    CAS  Google Scholar 

  5. Lo, Y.Y.C., Wong, J.M.S. & Cruz, T.F. Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J. Biol. Chem. 271, 15703–15707 (1996).

    Article  CAS  Google Scholar 

  6. McCord, J.M., Keele, B.B. & Fridovich, I. An enzyme based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc. Natl. Acad. Sci. USA 68, 1024–1027 (1971).

    Article  CAS  Google Scholar 

  7. Liu, J. et al. Redox regulation of pancreatic cancer cell growth: role of glutathione peroxidase in the suppression of the malignant phenotype. Hum. Gene Ther. 15, 239–250 (2004).

    Article  CAS  Google Scholar 

  8. Teoh, M.L.T. et al. Modulation of reactive oxygen species (ROS) in pancreatic cancer: insight into tumor growth suppression by the superoxide dismutases. Clin. Cancer Res. 13, 7441–7450 (2007).

    Article  CAS  Google Scholar 

  9. Okado-Matsumoto, A. & Fridovich, I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J. Biol. Chem. 27, 38388–38393 (2001).

    Article  Google Scholar 

  10. Sturtz, L.A., Diekert, K., Jensen, L.T., Lill, R. & Culotta, V.C. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem. 276, 38084–38089 (2001).

    CAS  PubMed  Google Scholar 

  11. Marklund, S.L., Holme, E. & Hellner, L. Superoxide dismutase in extracellular fluids. Clin. Chim. Acta 126, 41–51 (1982).

    Article  CAS  Google Scholar 

  12. Marklund, S. Human copper-containing superoxide dismutase of high molecular weight. Proc. Natl. Acad. Sci. USA 79, 7634–7638 (1982).

    Article  CAS  Google Scholar 

  13. Sandstrom, J., Carlsson, L., Marklund, S.L. & Edlund, T. The heparin-binding domain of extracellular superoxide dismutase C and formation of variants with reduced heparin affinity. J. Biol. Chem. 267, 18205–18209 (1992).

    CAS  PubMed  Google Scholar 

  14. Wong, H.W.G., Elwell, J.H., Oberley, L.W. & Goeddel, D.V. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58, 923–931 (1989).

    Article  CAS  Google Scholar 

  15. Cullen, J.J. et al. The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer Res. 63, 1297–1303 (2003).

    CAS  PubMed  Google Scholar 

  16. Weydert, C. et al. Suppression of the malignant phenotype in human pancreatic cancer cells by the overexpression of manganese superoxide dismutase. Mol. Cancer Ther. 2, 361–369 (2003).

    CAS  PubMed  Google Scholar 

  17. Ough, M. et al. Inhibition of cell growth by overexpression of manganese superoxide dismutase (MnSOD) in human pancreatic carcinoma. Free Radic. Res. 38, 1223–1233 (2004).

    Article  CAS  Google Scholar 

  18. Nishikawa, M., Tamada, A., Kumai, H., Yamashita, F. & Hashida, M. Inhibition of experimental pulmonary metastasis by controlling biodistribution of catalase in mice. Int. J. Cancer 99, 474–479 (2002).

    Article  CAS  Google Scholar 

  19. Nelson, K.K. et al. Elevated Sod2 activity augments matrix metalloproteinase expression: evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Clin. Cancer Res. 9, 424–432 (2003).

    CAS  PubMed  Google Scholar 

  20. Mills, G.C. Glutathione peroxidase, an erythrocyte enzyme that protects hemoglobin from oxidative damage. J. Biol. Chem. 229, 189–197 (1957).

    CAS  PubMed  Google Scholar 

  21. Hann, J.B. et al. Mice with homozygous null mutation for the most abundant glutathione peroxidase, GPx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J. Biol. Chem. 273, 22528–22536 (1998).

    Article  Google Scholar 

  22. Mirault, M.E., Tremblay, A., Beaudoin, N. & Tremblay, M. Overexpression of seleno-glutathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J. Biol. Chem. 266, 20572–20760 (1991).

    Google Scholar 

  23. Kelner, M.J., Bagnell, R.D., Uglik, S.F., Montoya, M.A. & Mullenbach, G.T. Heterologous expression of selenium-dependent glutathione peroxidase afford cellular resistance to paraquat. Arch. Biochem. Biophys. 323, 40–46 (1995).

    Article  CAS  Google Scholar 

  24. Hockenbery, D.M., Oltvai, Z.N., Yin, X., Milliman, C.L. & Korsmeyer, S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241–251 (1993).

    Article  CAS  Google Scholar 

  25. Kayanoki, Y. et al. The protective role of glutathione peroxidase in apoptosis induced by reactive oxygen species. Biochemistry 119, 817–822 (1996).

    Article  CAS  Google Scholar 

  26. Lewis, A. et al. Metastatic progression of pancreatic cancer: changes in antioxidant enzymes and cell growth. Clin. Exp. Metastasis 22, 523–532 (2006).

    Article  Google Scholar 

  27. Czaja, M.J. et al. Induction of MnSOD gene expression in a hepatic model of TNF-α toxicity does not result in increased protein. Am. J. Physiol. 266, G737–G744 (1994).

    CAS  PubMed  Google Scholar 

  28. Cullen, J.J., Mitros, F.A. & Oberley, L.W. Expression of antioxidant enzymes in diseases of the human pancreas: another link between chronic pancreatitis and pancreatic cancer. Pancreas 26, 23–27 (2003).

    Article  CAS  Google Scholar 

  29. Lewis, A. et al. Targeting NAD(P)H:quinone oxidoreductase (NQO1) in pancreatic cancer. Mol. Carcinog. 43, 215–224 (2005).

    Article  CAS  Google Scholar 

  30. Du, J. et al. Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells. J. Biol. Chem. 281, 37416–37426 (2006).

    Article  CAS  Google Scholar 

  31. Oberley, L.W. & Spitz, D.R. Nitroblue tetrazolium. In Handbook of Methods for Oxygen Radical Research (ed. Greenwald, R.A.) 217–220 (CRC Press, Boca Raton, Florida, 1985).

  32. Spitz, D.R. & Oberley, L.W. An assay for superoxide dismutase in mammalian tissue homogenates. Anal. Biochem. 179, 8–18 (1989).

    Article  CAS  Google Scholar 

  33. Lowry, O.H., Rosebrough, N.J. & Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  34. Burton, K. A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 215–223 (1956).

    Article  Google Scholar 

  35. Crapo, J.D., Oury, T., Rabouille, C., Slot, J.W. & Chang, L.Y. Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. USA 89, 10405–10409 (1992).

    Article  CAS  Google Scholar 

  36. Spitz, D.R. & Oberley, L.W. Measurement of MnSOD and CuZnSOD activity in mammalian tissue homogenates. Curr. Protoc. Toxicol. 8, 7.5.1–7.5.11 (2001).

    Google Scholar 

  37. Weiss, R.H. et al. Evaluation of activity of putative superoxide dismutase mimics: direct analysis by stopped-flow kinetics. J. Biol. Chem. 268, 23049–23054 (1993).

    CAS  PubMed  Google Scholar 

  38. Ornstein, L. Disc electrophoresis. I. Background and theory. Ann. N.Y. Acad. Sci. 121, 321–349 (1964).

    Article  CAS  Google Scholar 

  39. Davis, B.J. Disc electrophoresis-II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121, 404–427 (1964).

    Article  CAS  Google Scholar 

  40. Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971).

    Article  CAS  Google Scholar 

  41. Beers, R.F. Jr. & Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140 (1952).

    CAS  Google Scholar 

  42. Aebi, H. & Lester, P. Catalase in vitro. In Methods in Enzymology. Vol. 105 (ed. Packer, L.) 121–126 (Academic Press, New York, New York, 1984).

    Article  CAS  Google Scholar 

  43. Treadwell, F.P. & Hall, W.T. Analytical chemistry. In Analytical Chemistry. Based on the German text by F.P. Treadwell edn. 9, Vol. 2 (ed. Hall, W.T.) (John Wiley & Sons, New York, New York, 1948).

    Google Scholar 

  44. Paglia, P.E. & Valentine, W.N. Studies on the quantitation and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158–169 (1967).

    CAS  PubMed  Google Scholar 

  45. Liu, J. et al. Suppression of the malignant phenotype in pancreatic cancer by the overexpression of phospholipid hydroperoxide glutathione peroxidase (PhGPx). Hum. Gene Ther. 17, 105–116 (2006).

    Article  CAS  Google Scholar 

  46. Günzler, W.A. & Flohé, L. Glutathione peroxidase. In Handbook of Methods for Oxygen Radical Research (ed. Greenwald, R.A.) 285–290 (CRC Press, Boca Raton, Florida, 1985).

  47. Lawrence, R.A. & Burk, R.F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys. Res. Commun. 71, 952–958 (1976).

    Article  CAS  Google Scholar 

  48. Lam, E.W.N. et al. Immunolocalization and adenoviral vector-mediated manganese superoxide dismutase gene transfer to experimental oral tumors. J. Dent. Res. 79, 1410–1417 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an NIH Grant CA137230 and a VA Merit Review Grant.

Author information

Authors and Affiliations

Authors

Contributions

C.J.W. and J.J.C. discussed and commented on the paper at all stages.

Corresponding author

Correspondence to Joseph J Cullen.

Supplementary information

Supplementary Method

Method for fixing tissues and cultured cells for immunogold immunohistochemistry. (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weydert, C., Cullen, J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5, 51–66 (2010). https://doi.org/10.1038/nprot.2009.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.197

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing