Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Global identification of protein kinase substrates by protein microarray analysis

Abstract

Herein, we describe a protocol for the global identification of in vitro substrates targeted by protein kinases using protein microarray technology. Large numbers of fusion proteins tagged at their carboxy-termini are purified in 96-well format and spotted in duplicate onto amino-silane-coated slides in a spatially addressable manner. These arrays are incubated in the presence of purified kinase and radiolabeled ATP, and then washed, dried and analyzed by autoradiography. The extent of phosphorylation of each spot is quantified and normalized, and proteins that are reproducibly phosphorylated in the presence of the active kinase relative to control slides are scored as positive substrates. This approach enables the rapid determination of kinase–substrate relationship on a proteome-wide scale, and although developed using yeast, has since been adapted to higher eukaryotic systems. Expression, purification and printing of the yeast proteome require about 3 weeks. Afterwards, each kinase assay takes 3 h to perform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow of a protein microarray-based kinase assay to identify candidate substrates targeted by the yeast kinases.

Similar content being viewed by others

References

  1. Hunter, T. Signaling–2000 and beyond. Cell 100, 113 (2000).

    CAS  PubMed  Google Scholar 

  2. Cohen, P. The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem. Sci. 25, 596 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Elphick, L.M., Lee, S.E., Gouverneur, V. & Mann, D.J. Using chemical genetics and ATP analogues to dissect protein kinase function. ACS Chem. Biol. 2, 299 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Moffat, J. & Sabatini, D.M. Building mammalian signalling pathways with RNAi screens. Nat. Rev. Mol. Cell Biol. 7, 177 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Ptacek, J. et al. Global analysis of protein phosphorylation in yeast. Nature 438, 679 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Schmelzle, K. & White, F.M. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr. Opin. Biotechnol. 17, 406 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Ptacek, J. & Snyder, M. Charging it up: global analysis of protein phosphorylation. Trends Genet. 22, 545 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Mok, J. & Snyder, M. in Handbook of Cell Signaling (2009)(in press).

  9. Nita-Lazar, A., Saito-Benz, H. & White, F.M. Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics 8, 4433 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ubersax, J.A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Loog, M. & Morgan, D.O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Dephoure, N. et al. Combining chemical genetics and proteomics to identify protein kinase substrates. Proc. Natl. Acad. Sci. USA 102, 17940 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Hutti, J.E. et al. A rapid method for determining protein kinase phosphorylation specificity. Nat. Methods 1, 27 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760 (2000).

    CAS  PubMed  Google Scholar 

  15. Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Gelperin, D.M. et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brandner, C.J. et al. The ORFeome of Staphylococcus aureus v 1.1. BMC Genomics 9, 321 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dricot, A. et al. Generation of the Brucella melitensis ORFeome version 1.1. Genome Res. 14, 2201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lamesch, P. et al. hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics 89, 307 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lamesch, P. et al. C. elegans ORFeome version 3.1: increasing the coverage of ORFeome resources with improved gene predictions. Genome Res. 14, 2064 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Popescu, S.C. et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 23, 80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Popescu, S.C. et al. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc. Natl. Acad. Sci. USA 104, 4730 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Boyle, S.N. et al. A critical role for cortactin phosphorylation by Abl-family kinases in PDGF-induced dorsal-wave formation. Curr. Biol. 17, 445 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Cheung, K.H. et al. A dynamic approach to mapping coordinates between microplates and microarrays. J. Biomed. Inform. 35, 306 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Hastie, C.J., McLauchlan, H.J. & Cohen, P. Assay of protein kinases using radiolabeled ATP: a protocol. Nat. Protoc. 1, 968 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Zhai, J.Y. Making GenPix Array List (GAL) Files. (2001) (http://www.moleculardevices.com/product_literature/download_doc.php?doc_num=443).

  27. Zhu, X., Gerstein, M. & Snyder, M. ProCAT: a data analysis approach for protein microarrays. Genome Biol. 7, R110 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the NIH. The assays shown in Figure 1 were performed by Dr. Jason Ptacek and Dr. Geeta Devgan. We thank Dr. Rui Chen and Dr. Vincent Bruno for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Michael Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mok, J., Im, H. & Snyder, M. Global identification of protein kinase substrates by protein microarray analysis. Nat Protoc 4, 1820–1827 (2009). https://doi.org/10.1038/nprot.2009.194

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.194

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing