Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of cortical neurons from mouse embryonic stem cells

Abstract

Embryonic stem cells (ESCs) constitute a tool of great potential in neurobiology, enabling the directed differentiation of specific neural cell types. We have shown recently that neurons of the cerebral cortex can be generated from mouse ESCs cultured in a chemically defined medium that contains no morphogen, but in the presence of the sonic hedgehog inhibitor cyclopamine. Corticogenesis from ESCs recapitulates the most important steps of cortical development, leading to the generation of multipotent cortical progenitors that sequentially produce cortical pyramidal neurons displaying distinct layer-specific identities. The protocol provides a most reductionist cellular model to tackle the complex mechanisms of cortical development and function, thereby opening new perspectives for the modeling of cortical diseases and the design of novel neurological treatments, while offering an alternative to animal use. In this protocol, we describe a method by which millions of cortical neurons can be generated in 2–3 weeks, starting from a single frozen vial of ESCs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timetable of corticogenesis from ESCs.
Figure 2: ESCs and ESC-derived neural progenitors and neurons in the DDM–cyclopamine protocol.

Similar content being viewed by others

References

  1. Wilson, S.W. & Rubenstein, J.L. Induction and dorsoventral patterning of the telencephalon. Neuron 28, 641–651 (2000).

    Article  CAS  Google Scholar 

  2. Bayer, S. & Altman, J. Neocortical Development (Raven Press, New York, 1991).

    Google Scholar 

  3. Hevner, R.F. et al. Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev. Neurosci. 25, 139–151 (2003).

    Article  CAS  Google Scholar 

  4. Molyneaux, B.J., Arlotta, P., Menezes, J.R. & Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    Article  CAS  Google Scholar 

  5. Leone, D.P., Srinivasan, K., Chen, B., Alcamo, E. & McConnell, S.K. The determination of projection neuron identity in the developing cerebral cortex. Curr. Opin. Neurobiol. 18, 28–35 (2008).

    Article  CAS  Google Scholar 

  6. Kokovay, E., Shen, Q. & Temple, S. The incredible elastic brain: how neural stem cells expand our minds. Neuron 60, 420–429 (2008).

    Article  CAS  Google Scholar 

  7. Noctor, S.C., Martinez-Cerdeno, V. & Kriegstein, A.R. Neural stem and progenitor cells in cortical development. Novartis. Found. Symp. 288, 59–73 (2007).

    CAS  PubMed  Google Scholar 

  8. Gotz, M. & Sommer, L. Cortical development: the art of generating cell diversity. Development 132, 3327–3332 (2005); discussion 73–78, 96–98.

    Article  Google Scholar 

  9. Schuurmans, C. & Guillemot, F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34 (2002).

    Article  CAS  Google Scholar 

  10. Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    Article  CAS  Google Scholar 

  11. Wobus, A.M., Grosse, R. & Schoneich, J. Specific effects of nerve growth factor on the differentiation pattern of mouse embryonic stem cells in vitro . Biomed. Biochim. Acta 47, 965–973 (1988).

    CAS  PubMed  Google Scholar 

  12. Bain, G., Kitchens, D., Yao, M., Huettner, J.E. & Gottlieb, D.I. Embryonic stem cells express neuronal properties in vitro . Dev. Biol. 168, 342–357 (1995).

    Article  CAS  Google Scholar 

  13. Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., Segal, M. & McKay, R.D. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro . Mech. Dev. 59, 89–102 (1996).

    Article  CAS  Google Scholar 

  14. Fraichard, A. et al. In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108 (Part 10): 3181–3188 (1995).

    CAS  PubMed  Google Scholar 

  15. Ueno, M. et al. Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc. Natl. Acad. Sci. USA 103, 9554–9559 (2006).

    Article  CAS  Google Scholar 

  16. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  Google Scholar 

  17. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  Google Scholar 

  18. Murashov, A.K. et al. Directed differentiation of embryonic stem cells into dorsal interneurons. FASEB J. 19, 252–254 (2005).

    Article  CAS  Google Scholar 

  19. Salero, E. & Hatten, M.E. Differentiation of ES cells into cerebellar neurons. Proc. Natl. Acad. Sci. USA 104, 2997–3002 (2007).

    Article  CAS  Google Scholar 

  20. Su, H.L. et al. Generation of cerebellar neuron precursors from embryonic stem cells. Dev. Biol. 290, 287–296 (2006).

    Article  CAS  Google Scholar 

  21. Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M. & McKay, R.D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679 (2000).

    Article  CAS  Google Scholar 

  22. Bouhon, I.A., Kato, H., Chandran, S. & Allen, N.D. Neural differentiation of mouse embryonic stem cells in chemically defined medium. Brain Res. Bull. 68, 62–75 (2005).

    Article  CAS  Google Scholar 

  23. Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    Article  CAS  Google Scholar 

  24. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  CAS  Google Scholar 

  25. Bibel, M. et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat. Neurosci. 7, 1003–1009 (2004).

    Article  CAS  Google Scholar 

  26. Du, Z.W. & Zhang, S.C. Neural differentiation from embryonic stem cells: which way? Stem Cells Dev. 13, 372–381 (2004).

    Article  Google Scholar 

  27. Ying, Q.L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    Article  CAS  Google Scholar 

  28. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    Article  CAS  Google Scholar 

  29. Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8, 438–450 (2007).

    Article  CAS  Google Scholar 

  30. Javaherian, A. & Kriegstein, A. A stem cell niche for intermediate progenitor cells of the embryonic cortex. Cereb. Cortex 19 (Suppl 1): i70–i77 (2009).

    Article  Google Scholar 

  31. Bibel, M., Richter, J., Lacroix, E. & Barde, Y.A. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat. Protoc. 2, 1034–1043 (2007).

    Article  CAS  Google Scholar 

  32. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  CAS  Google Scholar 

  33. Levine, A.J. & Brivanlou, A.H. Proposal of a model of mammalian neural induction. Dev. Biol. 308, 247–256 (2007).

    Article  CAS  Google Scholar 

  34. Nagy, A., Gertsenstein, M., Vintersen, K. & Behringer, R. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2003).

    Google Scholar 

  35. Chen, J.K., Taipale, J., Cooper, M.K. & Beachy, P.A. Inhibition of hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002).

    Article  CAS  Google Scholar 

  36. Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    Article  CAS  Google Scholar 

  37. Brewer, G.J., Torricelli, J.R., Evege, E.K. & Price, P.J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  Google Scholar 

  38. Okada, Y., Shimazaki, T., Sobue, G. & Okano, H. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev. Biol. 275, 124–142 (2004).

    Article  CAS  Google Scholar 

  39. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to other members of the lab and IRIBHM for their help and advice. This work was funded by the Belgian FNRS/FRSM, the Belgian Queen Elizabeth Medical Foundation, the Simone et Pierre Clerdent Foundation, the Action de Recherches Concertées (ARC) Programs, the Interuniversity Attraction Poles Program (IUAP), Belgian State, Federal Office, the Walloon Region Excellence Program CIBLES (to P.V.) and the EU Marie Curie Fellowship Program (to T.B. and P.V.). P.V. is a Senior Research Associate of the FNRS and N.G. and T.B. were funded as Research Fellows of the FNRS. T.B. is a Fellow of the EU Marie Curie Program.

Author information

Authors and Affiliations

Authors

Contributions

N.G., T.B., A.H., G.N. and J.v.d.A. performed all experiments. All authors contributed to the design and analysis of experiment. N.G., T.B. and P.V. wrote the paper.

Corresponding author

Correspondence to Pierre Vanderhaeghen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaspard, N., Bouschet, T., Herpoel, A. et al. Generation of cortical neurons from mouse embryonic stem cells. Nat Protoc 4, 1454–1463 (2009). https://doi.org/10.1038/nprot.2009.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.157

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing