Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues

Abstract

This protocol describes a cell/hydrogel molding method for precise and reproducible biomimetic fabrication of three-dimensional (3D) muscle tissue architectures in vitro. Using a high aspect ratio soft lithography technique, we fabricate polydimethylsiloxane (PDMS) molds containing arrays of mesoscopic posts with defined size, elongation and spacing. On cell/hydrogel molding, these posts serve to enhance the diffusion of nutrients to cells by introducing elliptical pores in the cell-laden hydrogels and to guide local 3D cell alignment by governing the spatial pattern of mechanical tension. Instead of ultraviolet or chemical cross-linking, this method utilizes natural hydrogel polymerization and topographically constrained cell-mediated gel compaction to create the desired 3D tissue structures. We apply this method to fabricate several square centimeter large, few hundred micron-thick bioartificial muscle tissues composed of viable, dense, uniformly aligned and highly differentiated cardiac or skeletal muscle fibers. The protocol takes 4–5 d to fabricate PDMS molds followed by 2 weeks of cell culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of bioartificial muscle tissue constructs.
Figure 2: Fabrication of PDMS tissue molds.
Figure 3: Compaction of cell–hydrogel mixture with time in culture.
Figure 4: Control of tissue construct dimensions and structure.
Figure 5: Analysis of muscle cell alignment in tissue constructs.
Figure 6: Assessment of cell differentiation and distribution within the muscle tissue constructs.

Similar content being viewed by others

References

  1. Langer, R. & Vacanti, J.P. Tissue engineering. Science 260, 920–926 (1993).

    Article  CAS  Google Scholar 

  2. Cukierman, E., Pankov, R., Stevens, D.R. & Yamada, K.M. Taking cell–matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  Google Scholar 

  3. Nelson, C.M., Vanduijn, M.M., Inman, J.L., Fletcher, D.A. & Bissell, M.J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006).

    Article  CAS  Google Scholar 

  4. Yamada, K.M. & Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610 (2007).

    Article  CAS  Google Scholar 

  5. Bursac, N., Loo, Y., Leong, K. & Tung, L. Novel anisotropic engineered cardiac tissues: studies of electrical propagation. Biochem. Biophys. Res. Commun. 361, 847–853 (2007).

    Article  CAS  Google Scholar 

  6. Yoshioka, J. et al. Cardiomyocyte hypertrophy and degradation of connexin43 through spatially restricted autocrine/paracrine heparin-binding EGF. Proc. Natl. Acad. Sci. USA 102, 10622–10627 (2005).

    Article  CAS  Google Scholar 

  7. Padmawar, P., Yao, X., Bloch, O., Manley, G.T. & Verkman, A.S. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat. Methods 2, 825–827 (2005).

    Article  CAS  Google Scholar 

  8. Cascio, W.E., Yan, G.X. & Kleber, A.G. Early changes in extracellular potassium in ischemic rabbit myocardium. The role of extracellular carbon dioxide accumulation and diffusion. Circ. Res. 70, 409–422 (1992).

    Article  CAS  Google Scholar 

  9. Engler, A.J., Humbert, P.O., Wehrle-Haller, B. & Weaver, V.M. Multiscale modeling of form and function. Science 324, 208–212 (2009).

    Article  CAS  Google Scholar 

  10. Lieber, R.L. Skeletal Muscle Structure, Function and Plasticity: The Physiological Basis of Rehabilitation (Lippincott Williams & Wilkins, Philadelphia, Pennsylvania, 2002).

    Google Scholar 

  11. Kleber, A.G. & Rudy, Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84, 431–488 (2004).

    Article  CAS  Google Scholar 

  12. Costa, K.D., Takayama, Y., McCulloch, A.D. & Covell, J.W. Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am. J. Physiol. 276, H595–H607 (1999).

    CAS  PubMed  Google Scholar 

  13. LeGrice, I.J. et al. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269, H571–H582 (1995).

    CAS  PubMed  Google Scholar 

  14. Bien, H., Yin, L. & Entcheva, E. Cardiac cell networks on elastic microgrooved scaffolds. IEEE Eng. Med. Biol. Mag. 22, 108–112 (2003).

    Article  Google Scholar 

  15. Zhao, Y., Zeng, H., Nam, J. & Agarwal, S. Fabrication of skeletal muscle constructs by topographic activation of cell alignment. Biotechnol. Bioeng. 102, 624–631 (2009).

    Article  CAS  Google Scholar 

  16. Liao, I., Liu, J., Bursac, N. & Leong, K. Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers. Cell. Mol. Bioeng. 1, 133–145 (2008).

    Article  CAS  Google Scholar 

  17. Zong, X. et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26, 5330–5338 (2005).

    Article  CAS  Google Scholar 

  18. Bursac, N., Parker, K.K., Iravanian, S. & Tung, L. Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle. Circ. Res. 91, e45–e54 (2002).

    Article  CAS  Google Scholar 

  19. Badie, N. & Bursac, N. Novel micropatterned cardiac cell cultures with realistic ventricular microstructure. Biophys. J. 96, 3873–3885 (2009).

    Article  CAS  Google Scholar 

  20. Clark, P., Coles, D. & Peckham, M. Preferential adhesion to and survival on patterned laminin organizes myogenesis in vitro . Exp. Cell Res. 230, 275–283 (1997).

    Article  CAS  Google Scholar 

  21. Simpson, D.G., Majeski, M., Borg, T.K. & Terracio, L. Regulation of cardiac myocyte protein turnover and myofibrillar structure in vitro by specific directions of stretch. Circ. Res. 85, e59–e69 (1999).

    Article  CAS  Google Scholar 

  22. Engelmayr, G.C. Jr. et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003–1010 (2008).

    Article  CAS  Google Scholar 

  23. Kroehne, V. et al. Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. J. Cell Mol. Med. 12, 1640–1648 (2008).

    Article  CAS  Google Scholar 

  24. Powell, C.A., Smiley, B.L., Mills, J. & Vandenburgh, H.H. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. Cell Physiol. 283, C1557–C1565 (2002).

    Article  CAS  Google Scholar 

  25. Syedain, Z.H., Weinberg, J.S. & Tranquillo, R.T. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl. Acad. Sci. USA 105, 6537–6542 (2008).

    Article  CAS  Google Scholar 

  26. Huang, Y.C., Dennis, R.G., Larkin, L. & Baar, K. Rapid formation of functional muscle in vitro using fibrin gels. J. Appl. Physiol. 98, 706–713 (2005).

    Article  Google Scholar 

  27. Rhim, C. et al. Morphology and ultrastructure of differentiating three-dimensional mammalian skeletal muscle in a collagen gel. Muscle Nerve 36, 71–80 (2007).

    Article  Google Scholar 

  28. Zimmermann, W.H. et al. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223–230 (2002).

    Article  CAS  Google Scholar 

  29. Black, L.D., Meyers, J.D., Weinbaum, J.S., Shvelidze, Y.A. & Tranquillo, R.T. Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Eng. Part A (2009) in press.

  30. Tsang, V.L. & Bhatia, S.N. Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56, 1635–1647 (2004).

    Article  Google Scholar 

  31. Liu Tsang, V. et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21, 790–801 (2007).

    Article  Google Scholar 

  32. Gonen-Wadmany, M., Oss-Ronen, L. & Seliktar, D. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials 28, 3876–3886 (2007).

    Article  CAS  Google Scholar 

  33. Fedorovich, N.E. et al. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30, 344–353 (2009).

    Article  CAS  Google Scholar 

  34. Williams, C.G., Malik, A.N., Kim, T.K., Manson, P.N. & Elisseeff, J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26, 1211–1218 (2005).

    Article  CAS  Google Scholar 

  35. Bian, W. & Bursac, N. Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials 30, 1401–1412 (2009).

    Article  CAS  Google Scholar 

  36. Whitesides, G.M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  37. Legant, W.R. et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl. Acad. Sci. USA 106, 10097–10102 (2009).

    Article  CAS  Google Scholar 

  38. Andreatta, R.H., Liem, R.K. & Scheraga, H.A. Mechanism of action of thrombin on fibrinogen. I. Synthesis of fibrinogen-like peptides, and their proteolysis by thrombin and trypsin. Proc. Natl. Acad. Sci. USA 68, 253–256 (1971).

    Article  CAS  Google Scholar 

  39. Cummings, C.L., Gawlitta, D., Nerem, R.M. & Stegemann, J.P. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials 25, 3699–3706 (2004).

    Article  CAS  Google Scholar 

  40. Shi, Y., Rittman, L. & Vesely, I. Novel geometries for tissue-engineered tendonous collagen constructs. Tissue Eng. 12, 2601–2609 (2006).

    Article  CAS  Google Scholar 

  41. Semple, J.L., Woolridge, N. & Lumsden, C.J. In vitro, in vivo, in silico: computational systems in tissue engineering and regenerative medicine. Tissue Eng. 11, 341–356 (2005).

    Article  CAS  Google Scholar 

  42. Helm, P., Beg, M.F., Miller, M.I. & Winslow, R.L. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann. N Y Acad. Sci. 1047, 296–307 (2005).

    Article  Google Scholar 

  43. Ou, P. et al. Three-dimensional CT scanning: a new diagnostic modality in congenital heart disease. Heart 93, 908–913 (2007).

    Article  Google Scholar 

  44. Shimizu, T. et al. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 20, 708–710 (2006).

    Article  CAS  Google Scholar 

  45. Pérennès, F., Marmiroli, B., Tormen, M., Matteucci, M. & Di Fabrizio, E. Replication of deep x-ray lithography fabricated microstructures through casting of soft material. J. Microlith. Microfab. Microsyst. 5, 011007 (2006).

    Google Scholar 

  46. Tan, J.L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  Google Scholar 

  47. McDonald, J.C. & Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002).

    Article  CAS  Google Scholar 

  48. Bursac, N. et al. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277, H433–H444 (1999).

    CAS  PubMed  Google Scholar 

  49. Pedrotty, D.M. et al. Structural coupling of cardiomyocytes and noncardiomyocytes: quantitative comparisons using a novel micropatterned cell pair assay. Am. J. Physiol. Heart Circ. Physiol. 295, H390–H400 (2008).

    Article  CAS  Google Scholar 

  50. Karlon, W.J., Covell, J.W., McCulloch, A.D., Hunter, J.J. & Omens, J.H. Automated measurement of myofiber disarray in transgenic mice with ventricular expression of ras. Anat. Rec. 252, 612–625 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ava Krol and Lisa Satterwhite for their assistance with cell isolation. This study is supported by a national science scholarship from the Singapore Agency for Science, Technology and Research (A*STAR) to B.L.; an American Heart Association predoctoral fellowship (No. 0715178U) to N.B. (Nima Badie); and NIH grants HL080469 from the National Heart, Lung, and Blood Institute and AR055226 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases to N.B. (Nenad Bursac).

Author information

Authors and Affiliations

Authors

Contributions

W.B. and B.L. contributed equally to this work. W.B., B.L. and N.B. (Nenad Bursac) jointly developed the protocol; B.L. optimized the fabrication of PDMS tissue molds; W.B. carried out the cell–hydrogel molding experiments and structural assessment of the resulting tissue constructs; N.B. (Nima Badie) developed the program for the analysis of cell alignment. All authors contributed the preparation of the paper.

Corresponding author

Correspondence to Nenad Bursac.

Supplementary information

Supplementary Video 1

Spontaneously twitching skeletal muscle tissue construct at culture day 7 (i.e., after 3 days of differentiation). (MOV 865 kb)

Supplementary Video 2

Spontaneously contracting cardiac muscle tissue construct at culture day 13. (MOV 312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, W., Liau, B., Badie, N. et al. Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nat Protoc 4, 1522–1534 (2009). https://doi.org/10.1038/nprot.2009.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.155

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing