Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Miniaturized parallel screens to identify chromatographic steps required for recombinant protein purification

Abstract

Methods development in chromatography is a time-consuming, trial-and-error process that requires laborious experimentation. We describe a high-throughput screening (HTS) protocol for the rapid identification of chromatographic steps for protein purification from cell-free expression broths. Broths containing the protein are loaded on different chromatographic resins aliquotted in membrane-bottomed microtiter plates. Serial step elution of protein from resins results in fraction collection in 96-well plates. Choice of the optimal chromatographic operating conditions is based on protein purity in eluted fractions, determined using SDS-PAGE analysis or similar analytical techniques. The screening procedure is then repeated in order to identify the subsequent chromatographic steps, ultimately leading to high purities of the protein. The protocol takes 24 h in order to determine the required sequence of chromatographic steps. The use of a miniaturized screen facilitates screening of a range of media and operating conditions (i.e., pH, salt concentration, and so on.) in parallel and is a novel approach to chromatographic methods development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Analysis of fractions eluted during the miniaturized screening using sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE).
Figure 3: SDS-PAGE analysis of fractions eluted from the second screening step for the purification of α-amylase from cell-free culture broth.

Similar content being viewed by others

References

  1. Sunasara, K.M., Xia, F., Gronke, R.S. & Cramer, S.M. Application of hydrophobic interaction displacement chromatography for an industrial protein purification. Biotechnol. Bioeng. 82, 330–339 (2003).

    Article  CAS  Google Scholar 

  2. Shepard, S.R. et al. Large-scale purification of recombinant human angiostatin. Protein Expr. Purif. 20, 216–227 (2000).

    Article  CAS  Google Scholar 

  3. Prazeres, D.M., Schluep, T. & Cooney, C. Preparative purification of supercoiled plasmid DNA using anion-exchange chromatography. J. Chromatogr. A 806, 31–45 (1998).

    Article  CAS  Google Scholar 

  4. Haldankar, R., Kopchick, J.J. & Ridgway, D. Stable production of a human growth hormone antagonist from CHO cells adapted to serum-free suspension culture. Biotechnol. Prog. 15, 336–346 (1999).

    Article  CAS  Google Scholar 

  5. Shukla, A.A. et al. Preparative purification of a recombinant protein by hydrophobic interaction chromatography: modulation of selectivity by the use of chaotropic additives. Biotechnol. Prog. 18, 556–564 (2002).

    Article  CAS  Google Scholar 

  6. Levison, P.R. Large-scale ion-exchange column chromatography of proteins. Comparison of different formats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 790, 17–33 (2003).

    Article  CAS  Google Scholar 

  7. Van Hijfte, L., Marciniak, G. & Froloff, N. Combinatorial chemistry, automation and molecular diversity: new trends in the pharmaceutical industry. J. Chromatogr. B Biomed. Sci. Appl. 725, 3–15 (1999).

    Article  CAS  Google Scholar 

  8. Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P. & Gordon, E.M. Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J. Med. Chem. 37, 1233–1251 (1994).

    Article  CAS  Google Scholar 

  9. Gordon, E.M., Barrett, R.W., Dower, W.J., Fodor, S.P. & Gallop, M.A. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J. Med. Chem. 37, 1385–1401 (1994).

    Article  CAS  Google Scholar 

  10. Woodbury Jr., C.P. & Venton, D.L. Methods of screening combinatorial libraries using immobilized or restrained receptors. J. Chromatogr. B Biomed. Sci. Appl. 725, 113–137 (1999).

    Article  CAS  Google Scholar 

  11. Scott, J.K. & Smith, G.P. Searching for peptide ligands with an epitope library. Science 249, 386–390 (1990).

    Article  CAS  Google Scholar 

  12. Barrett, R.W. et al. Selective enrichment and characterization of high affinity ligands from collections of random peptides on filamentous phage. Anal. Biochem. 204, 357–364 (1992).

    Article  CAS  Google Scholar 

  13. Mondorf, K., Kaufman, D.B. & Carbonell, R.G. Screening of combinatorial peptide libraries: identification of ligands for affinity purification of proteins using a radiological approach. J. Pept. Res. 52, 526–536 (1998).

    Article  CAS  Google Scholar 

  14. Teng, S.F., Sproule, K., Hussain, A. & Lowe, C.R. A strategy for the generation of biomimetic ligands for affinity chromatography. Combinatorial synthesis and biological evaluation of an IgG binding ligand. J. Mol. Recognit. 12, 67–75 (1999).

    Article  CAS  Google Scholar 

  15. Burton, N.P. & Lowe, C.R. Design of novel affinity adsorbents for the purification of trypsin-like proteases. J. Mol. Recognit. 5, 55–68 (1992).

    Article  CAS  Google Scholar 

  16. Sproule, K. et al. New strategy for the design of ligands for the purification of pharmaceutical proteins by affinity chromatography. J. Chromatogr. B Biomed. Sci. Appl. 740, 17–33 (2000).

    Article  CAS  Google Scholar 

  17. Lowe, C.R. Combinatorial approaches to affinity chromatography. Curr. Opin. Chem. Biol. 5, 248–256 (2001).

    Article  CAS  Google Scholar 

  18. Huang, P.Y. et al. Affinity purification of von Willebrand factor using ligands derived from peptide libraries. Bioorg. Med. Chem. 4, 699–708 (1996).

    Article  CAS  Google Scholar 

  19. Kaufman, D.B. et al. Affinity purification of fibrinogen using a ligand from a peptide library. Biotechnol. Bioeng. 77, 278–289 (2002).

    Article  CAS  Google Scholar 

  20. Oldenburg, K.R., Loganathan, D., Goldstein, I.J., Schultz, P.G. & Gallop, M.A. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc. Natl. Acad. Sci. USA 89, 5393–5397 (1992).

    Article  CAS  Google Scholar 

  21. Clonis, Y.D. Affinity chromatography matures as bioinformatic and combinatorial tools develop. J. Chromatogr. A 1101, 1–24 (2006).

    Article  CAS  Google Scholar 

  22. Saraswat, L.D. et al. Affinity ligand selection from a library of small molecules: assay development, screening, and application. Biotechnol. Prog. 21, 300–308 (2005).

    Article  CAS  Google Scholar 

  23. Paborsky, L.R., Dunn, K.E., Gibbs, C.S. & Dougherty, J.P. A nickel chelate microtiter plate assay for six histidine-containing proteins. Anal. Biochem. 234, 60–65 (1996).

    Article  CAS  Google Scholar 

  24. Draveling, C., Ren, L., Haney, P., Zeisse, D. & Qoronfleh, M.W. SwellGel: an affinity chromatography technology for high-capacity and high-throughput purification of recombinant-tagged proteins. Protein Expr. Purif. 22, 359–366 (2001).

    Article  CAS  Google Scholar 

  25. Mazza, C.B. et al. High-throughput screening and quantitative structure-efficacy relationship models of potential displacer molecules for ion-exchange systems. Biotechnol. Bioeng. 80, 60–72 (2002).

    Article  CAS  Google Scholar 

  26. Rege, K., Hu, S., Moore, J.A., Dordick, J.S. & Cramer, S.M. Chemoenzymatic synthesis and high-throughput screening of an aminoglycoside-polyamine library: identification of high-affinity displacers and DNA-binding ligands. J. Am. Chem. Soc. 126, 12306–12315 (2004).

    Article  CAS  Google Scholar 

  27. Rege, K., Ladiwala, A. & Cramer, S.M. Multidimensional high-throughput screening of displacers. Anal. Chem. 77, 6818–6827 (2005).

    Article  CAS  Google Scholar 

  28. Rege, K., Ladiwala, A., Tugcu, N., Breneman, C.M. & Cramer, S.M. Parallel screening of selective and high-affinity displacers for proteins in ion-exchange systems. J. Chromatogr. A 1033, 19–28 (2004).

    Article  CAS  Google Scholar 

  29. Rege, K., Tugcu, N. & Cramer, S.M. Predicting column performance in displacement chromatography from high throughput screening batch experiments. Sep. Sci. Technol. 38, 1499–1517 (2003).

    Article  CAS  Google Scholar 

  30. Rege, K., Pepsin, M., Falcon, B., Steele, L. & Heng, M. High-throughput process development for recombinant protein purification. Biotechnol. Bioeng. 93, 618–630 (2006).

    Article  CAS  Google Scholar 

  31. Coffman, J.L., Kramarczyk, J.F. & Kelley, B.D. High-throughput screening of chromatographic separations: I. Method development and column modeling. Biotechnol. Bioeng. 100, 605–618 (2008).

    Article  CAS  Google Scholar 

  32. McNay, J.L. & Fernandez, E.J. Protein unfolding during reversed-phase chromatography: I. Effect of surface properties and duration of adsorption. Biotechnol. Bioeng. 76, 224–232 (2001).

    Article  CAS  Google Scholar 

  33. McNay, J.L., O'Connell, J.P. & Fernandez, E.J. Protein unfolding during reversed-phase chromatography: II. Role of salt type and ionic strength. Biotechnol. Bioeng. 76, 233–240 (2001).

    Article  CAS  Google Scholar 

  34. Bernard, A. & Payton, M. Selection of Escherichia coli expression systems. Curr. Protoc. Protein Sci. Ch. 5, Unit 5.2, 5.2.1–5.2.18 (2001).

  35. Andrew, S.M., Titus, J.A. & Zumstein, L. Dialysis and concentration of protein solutions. Curr. Protoc. Cell Biol. Appendix 3, A.3C.1–A.3C.5 (2001).

  36. Hagel, L. Gel-filtration chromatography. Curr. Protoc. Mol. Biol. Chapter 10, unit 10 19 (2001).

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.R. and M.H. designed the work, K.R. carried out experiments, and K.R. and M.H. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Kaushal Rege.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rege, K., Heng, M. Miniaturized parallel screens to identify chromatographic steps required for recombinant protein purification. Nat Protoc 5, 408–417 (2010). https://doi.org/10.1038/nprot.2009.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.149

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing