Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection

Abstract

Conservation of host signaling pathways and tissue physiology between Drosophila melanogaster and mammals allows for the modeling of human host–pathogen interactions in Drosophila. Here we present the use of genetically tractable Drosophila models of bacterial pathogenesis to study infection with the human opportunistic pathogen Pseudomonas aeruginosa. We describe and compare two protocols commonly used to infect Drosophila with P. aeruginosa: needle-pricking and injector-pumping. Each model has relevance for examining host components and bacterial factors in host defense and virulence. Fly survival and bacterial proliferation within host flies can be assessed as a measure of host susceptibility and pathogen virulence potential. The profiles of host responses toward P. aeruginosa virulent and non-virulent strains can be determined, enabling the identification of interaction-specific genes that could potentially favor or limit the initiation and progression of infection. Both of the protocols presented herein may be adapted for the inoculation and study of other microbial pathogens. P. aeruginosa cell preparation requires 24 h, fly inoculation 1 h, and fly survival and bacterial proliferation 1–4 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drosophila infection experimental set-up.
Figure 2: Parameters that affect mortality and growth rate in the needle pricking assay.

Similar content being viewed by others

References

  1. Lyczak, J.B., Cannon, C.L. & Pier, G.B. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2, 1051–1060 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Jander, G., Rahme, L.G. & Ausubel, F.M. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182, 3843–3845 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lau, G.W. et al. The Drosophila melanogaster toll pathway participates in resistance to infection by the Gram-negative human pathogen Pseudomonas aeruginosa . Infect. Immun. 71, 4059–4066 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mahajan-Miklos, S., Tan, M.W., Rahme, L.G. & Ausubel, F.M. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96, 47–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Rahme, L.G. et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Baldini, R.L., Lau, G.W. & Rahme, L.G. Use of plant and insect hosts to model bacterial pathogenesis. Methods Enzymol. 358, 3–13 (2002).

    Article  PubMed  Google Scholar 

  7. Rahme, L.G. et al. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 94, 13245–13250 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lutter, E.I., Faria, M.M., Rabin, H.R. & Storey, D.G. Pseudomonas aeruginosa cystic fibrosis isolates from individual patients demonstrate a range of lethality in two Drosophila melanogaster infection models. Infect. Immun. 76, 1877–1888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferrandon, D., Imler, J.L., Hetru, C. & Hoffmann, J.A. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7, 862–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Basset, A., Tzou, P., Lemaitre, B. & Boccard, F. A single gene that promotes interaction of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster . EMBO Rep. 4, 205–209 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nehme, N.T. et al. A model of bacterial intestinal infections in Drosophila melanogaster . PLoS Pathog. 3, e173 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Apidianakis, Y. et al. Involvement of skeletal muscle gene regulatory network in susceptibility to wound infection following trauma. PLoS ONE 2, e1356 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Apidianakis, Y. et al. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc. Natl. Acad. Sci. USA 102, 2573–2578 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boman, H.G., Nilsson, I. & Rasmuson, B. Inducible antibacterial defence system in Drosophila . Nature 237, 232–235 (1972).

    Article  CAS  PubMed  Google Scholar 

  15. Fauvarque, M.O. et al. Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. Microb. Pathog. 32, 287–295 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Avet-Rochex, A., Bergeret, E., Attree, I., Meister, M. & Fauvarque, M.O. Suppression of Drosophila cellular immunity by directed expression of the ExoS toxin GAP domain of Pseudomonas aeruginosa . Cell Microbiol. 7, 799–810 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Chugani, S.A. et al. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa . Proc. Natl. Acad. Sci. USA 98, 2752–2757 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corby-Harris, V., Habel, K.E., Ali, F.G. & Promislow, D.E. Alternative measures of response to Pseudomonas aeruginosa infection in Drosophila melanogaster . J. Evol. Biol. 20, 526–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. D'Argenio, D.A., Gallagher, L.A., Berg, C.A. & Manoil, C. Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183, 1466–1471 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, S.H., Park, S.Y., Heo, Y.J. & Cho, Y.H. Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA. Infect. Immun. 76, 4152–4162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lemaitre, B., Reichhart, J.M. & Hoffmann, J.A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA 94, 14614–14619 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneider, D.S. et al. Drosophila eiger mutants are sensitive to extracellular pathogens. PLoS Pathog. 3, e41 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sibley, C.D. et al. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog. 4, e1000184 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vodovar, N. et al. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc. Natl. Acad. Sci. USA 102, 11414–11419 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vallet-Gely, I., Lemaitre, B. & Boccard, F. Bacterial strategies to overcome insect defences. Nat. Rev. Microbiol. 6, 302–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Apidianakis, Y. et al. Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot. Cell 3, 413–419 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chamilos, G. et al. Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species . J. Infect. Dis. 193, 1014–1022 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Gottar, M. et al. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425–1437 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fritz, J.H., Girardin, S.E. & Philpott, D.J. Innate immune defense through RNA interference. Sci. STKE 2006, pe27 (2006).

    PubMed  Google Scholar 

  30. Cherry, S. & Perrimon, N. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat. Immunol. 5, 81–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Blow, N.S. et al. Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera. PLoS Pathog. 1, e8 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cox, C.R. & Gilmore, M.S. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 75, 1565–1576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garfinkel, M.D., Sollars, V.E., Lu, X. & Ruden, D.M. Multigenerational selection and detection of altered histone acetylation and methylation patterns: toward a quantitative epigenetics in Drosophila . Methods Mol. Biol. 287, 151–168 (2004).

    CAS  PubMed  Google Scholar 

  34. Tollefsbol, T.O. (ed.) Biological Aging: Methods and Protocols (Springer, New York) 119–120 (2007).

    Book  Google Scholar 

  35. Taylor, K. & Kimbrell, D.A. Host immune response and differential survival of the sexes in Drosophila . Fly (Austin) 1, 197–204 (2007).

    Article  Google Scholar 

  36. Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478–484 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Brandt, S.M. & Schneider, D.S. Bacterial infection of fly ovaries reduces egg production and induces local hemocyte activation. Dev. Comp. Immunol. 31, 1121–1130 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kaplan, E. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).

    Article  Google Scholar 

  39. Gosset, W. The probable error of the mean. Biometrika 6, 1–25 (1908).

    Article  Google Scholar 

  40. Ferrandon, D. et al. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217–1227 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reichhart, J.M. et al. Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J. 11, 1469–1477 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl. Acad. Sci. USA 92, 9465–9469 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila . Dev. Cell 3, 711–722 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. De Gregorio, E., Spellman, P.T., Tzou, P., Rubin, G.M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila . EMBO J. 21, 2568–2579 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deziel, E. et al. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol. Microbiol. 55, 998–1014 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Padfield, K.E. et al. Burn injury causes mitochondrial dysfunction in skeletal muscle. Proc. Natl. Acad. Sci. USA 102, 5368–5373 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liberati, N.T. et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103, 2833–2838 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lazzaro, B.P., Flores, H.A., Lorigan, J.G. & Yourth, C.P. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster . PLoS Pathog. 4, e1000025 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Linder, J.E., Owers, K.A. & Promislow, D.E. The effects of temperature on host-pathogen interactions in D. melanogaster: who benefits? J. Insect. Physiol. 54, 297–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Dionne, M.S., Pham, L.N., Shirasu-Hiza, M. & Schneider, D.S. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila . Curr. Biol. 16, 1977–1985 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Tzou, P., Meister, M. & Lemaitre, B. Methods for studying infection and immunity in Drosophila . Methods Microbiol. 31, 507–529 (2002).

    Article  CAS  Google Scholar 

  53. Riegler, M., Charlat, S., Stauffer, C. & Mercot, H. Wolbachia transfer from Rhagoletis cerasi to Drosophila simulans: investigating the outcomes of host-symbiont coevolution. Appl. Environ. Microbiol. 70, 273–279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila . Curr. Biol. 10, 781–784 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kocks, C. et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila . Cell 123, 335–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Buchon, N., Broderick, N.A., Poidevin, M., Pradervand, S. & Lemaitre, B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5, 200–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Dionne, M.S., Ghori, N. & Schneider, D.S. Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum . Infect. Immun. 71, 3540–3550 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liehl, P., Blight, M., Vodovar, N., Boccard, F. & Lemaitre, B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2, e56 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Park, S.Y., Heo, Y.J., Kim, K.S. & Cho, Y.H. Drosophila melanogaster is susceptible to Vibrio cholerae infection. Mol. Cells 20, 409–415 (2005).

    CAS  PubMed  Google Scholar 

  61. Leclerc, V. et al. Prophenoloxidase activation is not required for survival to microbial infections in Drosophila . EMBO Rep. 7, 231–235 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Bischoff, V. et al. Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat. Immunol. 5, 1175–1180 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Takehana, A. et al. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J. 23, 4690–4700 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bernal, A. & Kimbrell, D.A. Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. Proc. Natl. Acad. Sci. USA 97, 6019–6024 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alarco, A.M. et al. Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J. Immunol. 172, 5622–5628 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Bhabhra, R. et al. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect. Immun. 72, 4731–4740 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chamilos, G. et al. Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis. Proc. Natl. Acad. Sci. USA 105, 9367–9372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lamaris, G.A., Chamilos, G., Lewis, R.E. & Kontoyiannis, D.P. Virulence studies of Scedosporium and Fusarium species in Drosophila melanogaster . J. Infect. Dis. 196, 1860–1864 (2007).

    Article  PubMed  Google Scholar 

  70. Ekengren, S. & Hultmark, D. Drosophila cecropin as an antifungal agent. Insect. Biochem. Mol. Biol. 29, 965–972 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Kirsanova, R.V., Levitin, M.M., Lekarkina, L.P., Usenko, L.I. & Sharygin, V.I. Drosophila and the entomopathogenic fungus Beauveria bassiana as a model for the study of host and parasite interrelationships. Zh. Obshch. Biol. 36, 251–258 (1975).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the research grants, Shriners #8892 and R01AI063433. Y.A. was supported by Shriners research fellowship #8508.

Author information

Authors and Affiliations

Authors

Contributions

Y.A. and L.G.R. wrote the paper. Y.A. performed the experiments.

Corresponding author

Correspondence to Laurence G Rahme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apidianakis, Y., Rahme, L. Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4, 1285–1294 (2009). https://doi.org/10.1038/nprot.2009.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.124

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing