Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria

Abstract

Many techniques have been developed for studying inducible gene expression, but all of them are multicomponent systems consisting of cis-acting elements at the DNA or RNA level, trans-acting regulator proteins and/or small molecules as inducers. RNA thermometers are the only known single-component regulators of gene expression. They consist of a temperature-sensitive secondary structure in the 5′ untranslated region of the mRNA, which contains the ribosome-binding site. The ribosome-binding site can be masked or unmasked by a simple temperature shift, thereby repressing or inducing translation. Recently, we and others have designed synthetic RNA thermometers that are considerably simpler than naturally occurring thermometers and can be exploited as convenient on/off switches of gene expression. In this protocol, we describe the construction and use of synthetic RNA thermometers. We provide guidelines for the in silico design of thermometer-controlled mRNA leaders and for their experimental testing and optimization; the entire procedure can be completed in 2–3 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of a natural and two synthetic RNA thermometers.
Figure 2: Modular design of synthetic RNA thermometers.
Figure 3: A quick comparison of RNA thermometer constructs by temperature-controlled GFP (green fluorescent protein) expression in E. coli.
Figure 4: Workflow for design, construction and experimental testing of synthetic RNA thermometers.
Figure 5: Optimization of the switch temperature (melting temperature) of synthetic RNA thermometers.

Similar content being viewed by others

References

  1. Mandal, M. & Breaker, R.R. Gene regulation by riboswitches. Nature Rev. 5, 451–463 (2004).

    Article  CAS  Google Scholar 

  2. Winkler, W.C. & Breaker, R.R. Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 59, 487–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Serganov, A. & Patel, D.J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nature Rev. Genet. 8, 776–790 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Henkin, T.M. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes & Dev. 22, 3383–3390 (2008).

    Article  CAS  Google Scholar 

  5. Winkler, W., Nahvi, A. & Breaker, R.R. Thiamine derivates bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Barrick, J.E. et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acd. Sci. USA 101, 6421–6426 (2004).

    Article  CAS  Google Scholar 

  7. Mandal, M. et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306, 275–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Serganov, A., Polonskaia, A., Phan, A.T., Breaker, R.R. & Patel, D.J. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441, 1167–1171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Storz, G. An RNA thermometer. Genes & Dev. 13, 633–636 (1999).

    Article  CAS  Google Scholar 

  10. Narberhaus, F., Waldminghaus, T. & Chowdhury, S. RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Morita, M.T. et al. Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev. 13, 655–665 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nocker, A. et al. mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res. 29, 4800–4807 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chowdhury, S., Maris, C., Allain, F.H.-T. & Narberhaus, F. Molecular basis for temperature sensing by an RNA thermometer. EMBO J. 25, 2487–2497 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chowdhury, S., Ragaz, C., Kreuger, E. & Narberhaus, F. Temperature-controlled structural alterations of an RNA thermometer. J. Biol. Chem. 278, 47915–47921 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Waldminghaus, T., Gaubig, L.C. & Narberhaus, F. Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Mol. Genet. Genomics 278, 555–564 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes . Cell 110, 551–561 (2002).

    Article  PubMed  Google Scholar 

  17. Altuvia, S. & Oppenheim, A.B. Translational regulatory signals within the coding region of the bacteriophage lambda cIII gene. J. Bacteriol. 167, 415–419 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neupert, J., Karcher, D. & Bock, R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli . Nucleic Acids Res. 36, e124 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Waldminghaus, T., Kortmann, J., Gesing, S. & Narberhaus, F. Generation of synthetic RNA-based thermosensors. Biol. Chem. 389, 1319–1326 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Kozak, M. Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208 (1999).

    Article  CAS  Google Scholar 

  21. McCarthy, J.E.G. & Brimacombe, R. Prokaryotic translation initiation: the interactive pathway leading to initiation. Trends Genet. 10, 402–407 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Kozak, M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361, 13–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y. & Altman, S. A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs. Proc. Natl. Acad. Sci. USA 100, 13213–13218 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, H., Bjerknes, M., Kumar, R. & Jay, E. Determination of the optimal aligned spacing between the Shine–Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res. 22, 4953–4957 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, F. et al. High-level expression of HIV antigens from the tobacco and tomato plastid genomes. Plant Biotechnol. J. 6, 897–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Oey, M., Lohse, M., Kreikemeyer, B. & Bock, R. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J. 57, 436–445 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanahan, D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Birnboim, H.C. & Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513–1523 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  32. Schägger, H. & von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Karcher (Max Planck Institute of Molecular Plant Physiology) for helpful discussion and comments on the paper.

Author information

Authors and Affiliations

Authors

Contributions

J.N. and R.B. jointly prepared the paper.

Corresponding author

Correspondence to Ralph Bock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neupert, J., Bock, R. Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria. Nat Protoc 4, 1262–1273 (2009). https://doi.org/10.1038/nprot.2009.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.112

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing