Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Methods for simultaneous measurement of apoptosis and cell surface phenotype of epithelial cells in effusions by flow cytometry

Abstract

We describe here a protocol for the detection of epithelial cells in effusions combined with quantification of apoptosis by flow cytometry (FCM). The procedure described consists of the following stages: culturing and induction of apoptosis by staurosporine in control ovarian carcinoma cell lines (SKOV-3 and OVCAR-8); preparation of effusion specimens and cell lines for staining; staining of cancer cells in effusions and cell lines for cell surface markers (Ber-EP4, EpCAM and CD45) and intracellular/nuclear markers of apoptosis (cleaved caspase-3 and caspase-8, and incorporated deoxyuridine triphosphates); and FCM analysis of stained cell lines and effusions. This protocol identifies a specific cell population in cytologically heterogeneous clinical specimens and applies two methods to measure different aspects of apoptosis in the cell population of interest. The cleaved caspase and deoxyuridine triphosphate incorporation FCM assays are run in parallel and require (including sample preparation, staining, instrument adjustment and data acquisition) 8 h. The culturing of cell lines requires 2–3 days and induction of apoptosis requires 16 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gating strategy for cell lines.
Figure 2: dUTP incorporation and cleaved caspase-3 and capase-8 expressions in cell lines.
Figure 3: Analysis of effusion specimens.
Figure 4: Degradation of PerCP conjugate by ethanol in the APO-DIRECT assay.

Similar content being viewed by others

References

  1. US-Canadian Consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry. Bethesda, MD, USA, November 16–17, 1995. Cytometry 30, 213–274 (1997).

  2. Orfao, A. et al. Clinically useful information provided by the flow immunophenotyping of hematological malignancies: current status and future directions. Clin. Chem. 45, 1708–1717 (1999).

    CAS  PubMed  Google Scholar 

  3. Owens, M.A., Vall, H.G., Hurley, A.A. & Wormsley, S.B. Validation and quality control of immunophenotyping in clinical flow cytometry. J. Immunol. Methods 243, 33–50 (2000).

    Article  CAS  Google Scholar 

  4. Dunphy, C.H. Applications of flow cytometry and immunohistochemistry to diagnostic hematopathology. Arch. Pathol. Lab. Med. 128, 1004–1022 (2004).

    PubMed  Google Scholar 

  5. Bedrossian, C.W.M. Malignant effusions: A multimodal approach to cytologic diagnosis (Igaku-Shoin, New York, NY, 1994).

    Google Scholar 

  6. Davidson, B., Risberg, R., Reich, R. & Berner, A. Effusion cytology in ovarian cancer—new molecular methods as aids to diagnosis and prognosis. Clin. Lab. Med. 23, 729–754 (2003).

    Article  Google Scholar 

  7. Chen, L.M., Lazcano, O., Katzmann, J.A., Kimlinger, T.K. & Li, C.Y. The role of conventional cytology, immunocytochemistry, and flow cytometric DNA ploidy in evaluation of body cavity fluids: a prospective study of 52 patients. Am. J. Clin. Pathol. 109, 712–721 (1998).

    Article  CAS  Google Scholar 

  8. Schneller, J. et al. Flow cytometry and Feulgen cytophotometry in evaluation of effusions. Cancer 59, 1307–1313 (1987).

    Article  CAS  Google Scholar 

  9. Unger, K.M., Raber, M., Bedrossian, C.W., Stein, D.A. & Barlogie, B. Analysis of pleural effusions using automated flow cytometry. Cancer 52, 873–877 (1983).

    Article  CAS  Google Scholar 

  10. Krishan, A. et al. Detection of tumor cells in body cavity fluids by flow cytometric and immuncytochemical analysis. Diagn. Cytopathol. 34, 528–541 (2006).

    Article  Google Scholar 

  11. Ceyhan, B.B., Demiralp, E. & Celikel, T. Analysis of pleural effusions using flow cytometry. Respiration 63, 17–24 (1996).

    Article  CAS  Google Scholar 

  12. Sikora, J., Dworacki, G., Trybus, M., Batura-Gabryel, H. & Zeromski, J. Correlation between DNA content, expression of Ki-67 antigen of tumor cells and immunophenotype of lymphocytes from malignant pleural effusions. Tumour Biol. 19, 196–204 (1998).

    Article  CAS  Google Scholar 

  13. Risberg, B., Davidson, B., Dong, H.P., Nesland, J.M. & Berner, A. Flow cytometric immunophenotyping of serous effusions and peritoneal washings: comparison with immunocytometry and morphological findings. J. Clin. Pathol. 53, 513–517 (2000).

    Article  CAS  Google Scholar 

  14. Risberg, B. et al. Detection of monocyte/macrophage cell populations in effusions—a comparative study using flow cytometric immunophenotyping and immunocytochemistry. Diagn. Cytopathol. 25, 214–219 (2001).

    Article  CAS  Google Scholar 

  15. Davidson, B. et al. Detection of malignant epithelial cells in effusions using flow cytometric immunophenotyping: an analysis of 92 cases. Am. J. Clin. Pathol. 118, 85–92 (2002).

    Article  Google Scholar 

  16. Davidson, B. et al. αV- and β1-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol. Oncol. 90, 248–257 (2003).

    Article  CAS  Google Scholar 

  17. Givant-Horwitz, V. et al. Expression of the 67kDa laminin receptor and the α6 integrin subunit in serous ovarian carcinoma. Clin. Exp. Metastasis 20, 599–609 (2003).

    Article  CAS  Google Scholar 

  18. Davidson, B. et al. Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients: a novel model for tumor progression. Clin. Cancer Res. 10, 7335–7346 (2004).

    Article  CAS  Google Scholar 

  19. Sigstad, E. et al. Quantitative analysis of integrin expression in effusions using flow cytometric immunophenotyping. Diagn. Cytopathol. 33, 321–331 (2005).

    Article  Google Scholar 

  20. Kleinberg, L. et al. Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Virchows Arch. 449, 31–39 (2006).

    Article  CAS  Google Scholar 

  21. Dong, H.P. et al. NK and B cell infiltration correlates with worse outcome in metastatic ovarian carcinoma. Am. J. Clin. Pathol. 125, 451–458 (2006).

    Article  Google Scholar 

  22. Dong, H.P. et al. Death receptor expression is associated with poor response to chemotherapy and shorter survival in metastatic ovarian carcinoma. Cancer 112, 84–93 (2008).

    Article  Google Scholar 

  23. Vermeulen, K., Van bockstaele, D.R. & Berneman, Z.N. Apoptosis: mechanisms and relevance in cancer. Ann. Hematol. 84, 627–639 (2005).

    Article  CAS  Google Scholar 

  24. Jin, Z. & El-Deiry, W.S. Overview of cell death signaling pathways. Cancer Biol. Ther. 4, 139–163 (2005).

    Article  CAS  Google Scholar 

  25. Fadeel, B. & Orrenius, S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J. Intern. Med. 258, 479–517 (2005).

    Article  CAS  Google Scholar 

  26. Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    Article  CAS  Google Scholar 

  27. Viktorsson, K., Lewensohn, R. & Zhivotovsky, B. Apoptotic pathways and therapy resistance in human malignancies. Avd. Cancer Res. 94, 143–196 (2005).

    Article  CAS  Google Scholar 

  28. Johnstone, R.W., Ruefli, A.A. & Lowe, S.W. Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153–164 (2002).

    Article  CAS  Google Scholar 

  29. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).

    CAS  Google Scholar 

  30. Fulda, S. & Debatin, K.M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798–4811 (2006).

    Article  CAS  Google Scholar 

  31. Darzynkiewicz, Z. et al. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27, 1–20 (1997).

    Article  CAS  Google Scholar 

  32. Vermes, I., Haanen, C. & Reutelingsperger, C. Flow cytometry of apoptotic cell death. J. Immunol. Methods 243, 167–190 (2000).

    Article  CAS  Google Scholar 

  33. Ormerod, M.G., Paul, F., Cheetham, M. & Sun, X.M. Discrimination of apoptotic thymocytes by forward light scatter. Cytometry 21, 300–304 (1995).

    Article  CAS  Google Scholar 

  34. Schmid, I., Uittenbogaart, C. & Jamieson, B.D. Live-cell assay for detection of apoptosis by dual-laser flow cytometry using Hoechst 33342 and 7-amino-actinomycin D. Nat. Protoc. 2, 187–190 (2007).

    Article  CAS  Google Scholar 

  35. Riccardi, C. & Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1, 1458–1461 (2006).

    Article  CAS  Google Scholar 

  36. Troiano, L. et al. Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nat. Protoc. 2, 2719–2727 (2007).

    Article  CAS  Google Scholar 

  37. Belloc, F. Flow cytometry detection of caspase 3 activation in preapoptotic leukemic cells. Cytometry 40, 151–160 (2000).

    Article  CAS  Google Scholar 

  38. van Genderen, H. et al. In vitro measurement of cell death with the annexin A5 affinity assay. Nat. Protoc. 1, 363–367 (2006).

    Article  CAS  Google Scholar 

  39. Gorczyca, W. et al. Induction of DNA strand breaks associated with apoptosis during treatment of leukemias. Leukemia 7, 659–670 (1993).

    CAS  PubMed  Google Scholar 

  40. Darzynkiewicz, Z., Bedner, E. & Traganos, F. Difficulties and pitfalls in analysis of apoptosis. Methods Cell Biol. 63, 527–546 (2001).

    Article  CAS  Google Scholar 

  41. Pozarowski, P., Grabarek, J. & Darzynkiewicz, Z. Flow cytometry of apoptosis. Curr. Protoc. Cell Biol. Chapter 18: Unit 18.8.1-18.8.33 (2004).

  42. Komoriya, A., Packard, B.Z., Brown, M.J., Wu, M.L. & Henkart, P.A. Assessment of caspase activities in intact apoptotic thymocytes using cell-permeable fluorogenic caspase substrates. J. Exp. Med. 191, 1819–1828 (2000).

    Article  CAS  Google Scholar 

  43. Bedner, E., Smolewski, P., Amstad, P. & Darzynkiewicz, Z. Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp. Cell Res. 259, 308–313 (2000).

    Article  CAS  Google Scholar 

  44. Pozarowski, P., Huang, X., Halicka, D.H., Lee, B., Johnson, G. & Darzynkiewicz, Z. Interactions of fluorochrome-labeled caspase inhibitors with apoptotic cells: a caution in data interpretation. Cytometry A 55A, 50–60 (2003).

    Article  CAS  Google Scholar 

  45. Ormerod, M.G., O'Neill, C.F., Robertson, D. & Harrap, K.R. Cisplatin induces apoptosis in a human ovarian carcinoma cell line without concomitant internucleosomal degradation of DNA. Exp Cell Res. 211, 231–237 (1994).

    Article  CAS  Google Scholar 

  46. Oberhammer, F. et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 12, 3679–3684 (1993).

    Article  CAS  Google Scholar 

  47. Belmokhtar, C.A., Hillion, J. & Ségal-Bendirdjian, E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 20, 3354–3362 (2001).

    Article  CAS  Google Scholar 

  48. Gregory-Bass, R.C. et al. Prohibitin silencing reverses stabilization of mitochondrial integrity and chemoresistance in ovarian cancer cells by increasing their sensitivity to apoptosis. Int. J. Cancer 122, 1923–1930 (2008).

    Article  CAS  Google Scholar 

  49. Ofir, R. et al. Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ. 9, 636–642 (2002).

    Article  CAS  Google Scholar 

  50. Davidson, B. et al. The role of Desmin and N-cadherin in effusion cytology: a comparative study using established markers of mesothelial and epithelial cells. Am. J. Surg. Pathol. 25, 1405–1412 (2001).

    Article  CAS  Google Scholar 

  51. Dong, H.P., Holth, A., Berner, A., Davidson, B. & Risberg, B. Flow cytometric immunphenotyping of epithelial cancer cells in effusions - technical considerations and pitfalls. Cytometry B Clin. Cytom. 72B, 332–343 (2007).

    Article  CAS  Google Scholar 

  52. Perfetto, S.P., Ambrozak, D., Nguyen, R., Chattopadhyay, P. & Roederer, M. Quality assurance for polychromatic flow cytometry. Nat. Protoc. 1, 1522–1530 (2006).

    Article  CAS  Google Scholar 

  53. Schmid, I., Uittenbogaart, C.H. & Giorgi, J.V. Sensitive method for measuring apoptosis and cell surface phenotype in human thymocytes by flow cytometry. Cytometry 15, 12–20 (1994).

    Article  CAS  Google Scholar 

  54. Schmid, I., Uittenbogaart, C.H., Keld, B. & Giorgi, J.V. A rapid method for measuring apoptosis and dual-color immunofluorescence by single laser flow cytometry. J. Immunol. Methods 170, 145–157 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Norwegian Cancer Society, the Southern Norway Health Region Research Fund and the Research Fund at The Norwegian Radium Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Risberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H., Kleinberg, L., Davidson, B. et al. Methods for simultaneous measurement of apoptosis and cell surface phenotype of epithelial cells in effusions by flow cytometry. Nat Protoc 3, 955–964 (2008). https://doi.org/10.1038/nprot.2008.77

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.77

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing